Optimal Healthcare Resource Allocation in Covid Scenario Using Firefly Algorithm

Optimal Healthcare Resource Allocation in Covid Scenario Using Firefly Algorithm

  IJETT-book-cover           
  
© 2022 by IJETT Journal
Volume-70 Issue-5
Year of Publication : 2022
Authors : Anu, Anita Singhrova
DOI :  10.14445/22315381/IJETT-V70I5P226

How to Cite?

Anu, Anita Singhrova, "Optimal Healthcare Resource Allocation in Covid Scenario Using Firefly Algorithm," International Journal of Engineering Trends and Technology, vol. 70, no. 5, pp. 240-250, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I5P226

Abstract
Coronavirus pandemic is spreading exponentially across the world, and so is the surge in requirement of the intensive care unit (ICU) of hospitals. Proper management of healthcare resources and providing proper hospital beds, supplies, and healthcare services to patients are needed to cope with this disease. Fare rationing of scarce ICU resources should be allowed by critical care triage. This is one of the scenarios where emerging computing technologies contribute in an indispensable way. This paper presents a bio-inspired firefly algorithm for smart healthcare resource allocation in the COVID era. The firefly optimization results show a reduction in average waiting time and improvement in resource utilization compared to the random allocation technique.

Keywords
Coronavirus, Covid-19, Firefly, Fog Computing, Healthcare.

Reference
[1] J. L. Martin, H. Varilly, J. Cohn, and G. R. Wightwick, Preface: Technologies for a Smarter Planet, IBM Journal of Research and Development, 54 (4) (2010) 1–2. doi: 10.1147/JRD.2010.2051498.
[2] M. Nasajpour, S. Pouriyeh, R. M. Parizi, M. Dorodchi, M. Valero, and H. R. Arabnia, Internet of Things for Current COVID-19 and Future Pandemics: an Exploratory Study, Journal of Healthcare Informatics Research, 4(4) (2020) 325–364. doi: 10.1007/s41666-020-00080-6.
[3] S. Tian, W. Yang, J. M. L. Grange, P. Wang, W. Huang, and Z. Ye, Smart Healthcare: Making Medical Care More Iintelligent, Global Health Journal, 3(3) (2019) 62–65. doi: 10.1016/j.glohj.2019.07.001.
[4] L. Diallo, A. H. A. Hashim, M. J. E. Salami, S. B. O. Elagib, and A. A. Zarir, The Rise of Internet of Things and Big Data on the Cloud: Challenges and Future Trends, International Journal of Future Generation and Communication Networking, 10(3)(2017) 49– 56. doi: 10.14257/ijfgcn.2017.10.3.06.
[5] S. Kaur, A. Hans, and N. Singh, An Overview to Internet of Things (IOT), International Journal of Future Generation and Communication Networking., 9(9) (2016) 239–246. doi: 10.14257/ijfgcn.2016.9.9.21.
[6] I. H. Memon, Y. Jiaoyun, M. T. Hassan, and A. Ning, The Role of the Internet of Things (IoT) and Wireless Sensor Network (WSN) in Healthcare, International Journal of Engineering Trends and Technology., 67(7) (2019) 92–96. doi: 10.14445/22315381/IJETT-V67I7P218.
[7] M. Zhang and C. C. Yang, Classifying User Intention and Social Support Types in Online Healthcare Discussions, in 2014 IEEE International Conference on Healthcare Informatics, Verona, Italy, (2014) 51–60. doi: 10.1109/ICHI.2014.15.
[8] H. Demirkan, A Smart Healthcare Systems Framework, IT Professionals, 15(5)(2013) 38–45. doi: 10.1109/MITP.2013.35
[9] P. Hu, S. Dhelim, H. Ning, and T. Qiu, Survey on fog Computing: Architecture, key technologies, Applications and Open issues, Journal of Network and Computer Applications, 98(2017) 27–42 doi: 10.1016/j.jnca.2017.09.002.
[10] R. Mahmud, R. Kotagiri, and R. Buyya, Fog Computing: A Taxonomy, Survey and Future Directions, in the Internet of Everything, B. Di Martino, K.-C. Li, L. T. Yang, and A. Esposito, Eds. Singapore: Springer Singapore, (2018) 103–130. doi: 10.1007/978-981-10-5861-5_5.
[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog Computing and its role in the Internet of things, in Proceedings of the first edition of the MCC workshop on Mobile Cloud Computing - MCC ’12, Helsinki, Finland, (2012)13. doi: 10.1145/2342509.2342513.
[12] A. - and A. Singhrova, “Prioritized GA-PSO Algorithm for Efficient Resource Allocation in Fog Computing, Indian Journal of Computer Science and Engineering., 11(6)(2020) 907–916. doi: 10.21817/indjcse/2020/v11i6/201106205.
[13] X.-S. Yang, "Firefly Algorithm, Stochastic Test Functions and Design Optimisation, International Journal of Bio-Inspired Computation, 2(2) (2010) 78-84, [Online]. Available: http://arxiv.org/abs/1003.1409.
[14] E. J. Emanuel et al., Fair Allocation of Scarce Medical Resources in the Time of COVID-19, The New England Journal of Medicines, 382 (21) (2020) 2049–2055. doi: 10.1056/NEJMsb2005114.
[15] N. Leventhal et al., The Ethics of Creating a Resource Allocation Strategy During the COVID-19 Pandemic, Pediatrics, 146(1) (2020) e20201243, doi: 10.1542/peds.2020-1243.
[16] S. Zaza et al., A Conceptual Framework for Allocation of Federally Stockpiled Ventilators During Large-Scale Public Health Emergencies, Health Security., 14(1) (2016) 1–6. doi: 10.1089/hs.2015.0043.
[17] A. Dawson et al., An Ethics Framework for Making Resource Allocation Decisions Within Clinical Care: Responding to COVID-19, Journal of Bioethical Inquiry, 17(4) (2020) 749–755. doi: 10.1007/s11673-020-10007-w.
[18] M. Ordu, E. Demir, C. Tofallis, and M. M. Gunal, A Novel Healthcare Resource Allocation Decision Support tool: A Forecastingsimulation-Optimization Approach, Journal of Operational Research Society, 72(3) (2021) 485–500. doi: 10.1080/01605682.2019.1700186.
[19] A. Bahari and F. Asadi, A Simulation Optimization Approach for Resource Allocation in an Emergency Department Healthcare Unit, Global Heart, 15 (1) (2020) 14. doi: 10.5334/gh.528.
[20] L. Sun, G. W. DePuy, and G. W. Evans, Multi-objective Optimization Models for Patient Allocation during a Pandemic Influenza Outbreak, Computers and Operations Research, 51 (2014) 350–359. doi: 10.1016/j.cor.2013.12.001.
[21] M. Yousefi, M. Yousefi, R. P. M. Ferreira, J. H. Kim, and F. S. Fogliatto, Chaotic Genetic Algorithm and Adaboost Ensemble Metamodeling Approach for Optimum Resource Planning in Emergency Departments, Artificial Intelligence in Medicines, 84(2018) 23–33. doi: 10.1016/j.artmed.2017.10.002.
[22] Z. A. Collier, J. M. Keisler, B. D. Trump, J. C. Cegan, S. Wolberg, and I. Linkov, Value-Based Optimization of Healthcare Resource Allocation for COVID-19 Hot Spots, in COVID-19: Systemic Risk and Resilience, I. Linkov, J. M. Keenan, and B. D. Trump, Eds. Cham: Springer International Publishing, (2021) 103–114. doi: 10.1007/978-3-030-71587-8_7.
[23] S. Oueida, M. Aloqaily, and S. Ionescu, A Smart Healthcare Reward Model for Resource Allocation in Smart City, Multimedia Tools and Applications, 78(17) (2019) 24573–24594. doi: 10.1007/s11042-018-6647-4.
[24] R. P. Singh, M. Javaid, A. Haleem, and R. Suman, Internet of Things (IoT) Applications to Fight against COVID-19 Pandemic, Diabetes Metabolism Syndrome Clinical Research and Review., 14(4) (2020) 521–524. doi: 10.1016/j.dsx.2020.04.041.
[25] Y. Yin, Y. Zeng, X. Chen, and Y. Fan, The Internet of Things in Healthcare: An overview, Journal of Industrial Information Integration, 1(2016) 3–13. doi: 10.1016/j.jii.2016.03.004.
[26] V. M. Rohokale, N. R. Prasad, and R. Prasad, A Cooperative Internet of Things (IoT) For Rural Healthcare Monitoring and Control, in 2011 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India, (2011) 1–6. doi: 10.1109/WIRELESSVITAE.2011.5940920.
[27] L. M. R. Tarouco et al., Internet of Things in Healthcare: Interoperability and Security Issues, in 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, (2012) 6121–6125. doi: 10.1109/ICC.2012.6364830.
[28] O. Bibani et al., A Demo of IoT Healthcare Application Provisioning in Hybrid Cloud/Fog Environment, in 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg, Luxembourg, (2016) 472–475. doi: 10.1109/CloudCom.2016.0081.
[29] J. Hu, W. Liang, Z. Zeng, Y. Xie, and J. Yang, A Framework for Fog-Assisted Healthcare Monitoring, Computer Science and Information System, 16 (3)(2019) 753–772. doi: 10.2298/CSIS180930025H.
[30] A. M. Elmisery, S. Rho, and D. Botvich, A Fog Based Middleware for Automated Compliance with OECD Privacy Principles in Internet of Healthcare Things, IEEE Access, 4 (2016) 8418–8441. doi: 10.1109/ACCESS.2016.2631546.
[31] A. M. Rahmani et al., Exploiting Smart E-Health Gateways at The Edge of Healthcare Internet-of-Things: A Fog Computing Approach, Future Generation. Computer Systems., 78 (2018) 641–658. doi: 10.1016/j.future.2017.02.014.
[32] P. H. Vilela, J. J. P. C. Rodrigues, R. da R. Righi, S. Kozlov, and V. F. Rodrigues, Looking at Fog Computing for E-Health through the Lens of Deployment Challenges and Applications, Sensors, 20 (9) (2020) 2553. doi: 10.3390/s20092553.
[33] M. P, K. K, M. B, and M. D, The Innovation for Smart Patient Screening Platform via IoT System, International Journal of Engineering Trends and Technology, 70(2) (2022) 192–200. doi: 10.14445/22315381/IJETT-V70I2P223.
[34] J. Nayak, B. Naik, P. Dinesh, K. Vakula, and P. B. Dash, Firefly Algorithm in Biomedical and Health Care: Advances, Issues and Challenges," SN Computer Science, 1(6)(2020) 311. doi: 10.1007/s42979-020-00320-x.
[35] B. P. Battula and D. Balaganesh2, Prediction of Hospital Re-admission Using Firefly Based Multi-Layer Perceptron, Ingénierie des Systèmes D Information, 25 (4)(2020) 527–533. doi: 10.18280/isi.250417.
[36] K. Rahul and R. K. Banyal, Firefly Algorithm: An Optimization Solution in Big Data Processing for The Healthcare and Engineering Sector, International Journal of Speech Technology, (2020) doi: 10.1007/s10772-020-09783-y.
[37] R. Singh, C. Dutta, N. Singhal, and T. Choudhury, An Improved Vehicle Parking Mechanism to reduce Parking Space Searching Time using Firefly Algorithm and Feed Forward Back Propagation Method, Procedia Computer. Science. 167 (2020) 952–961.doi: 10.1016/j.procs.2020.03.394.
[38] E. Fatnassi, N. Guesmi, and T. Touil, An Application of a Discrete Firefly Algorithm in the Context of Smart Mobility, in Artificial Intelligence Trends in Intelligent Systems, R. Silhavy, R. Senkerik, Z. Kominkova Oplatkova, Z. Prokopova, and P. Silhavy, Eds. Cham: Springer International Publishing, 573 (2017) 434–443. doi: 10.1007/978-3-319-57261-1_43.
[39] A. Saba, A. Khalid, A. Ishaq, K. Parvez, S. Aimal, and N. Javaid, Home Energy Management using Firefly and Harmony Search Algorithm, 12th international Conference on P2P, Parallel, Grid, Cloud & Internet Computing, (2017).
[40] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K. Mankodiya, Towards Fog-driven IoT eHealth: Promises and Challenges of IoT in Medicine and Healthcare, Future Generation Computer System, 78 (2018) 659–676. doi: 10.1016/j.future.2017.04.036.
[41] N. F. Johari, A. M. Zain, M. H. Noorfa, and A. Udin, Firefly Algorithm for Optimization Problem, Applied Mechanics and Materials., 421(2013) 512–517. doi: 10.4028/www.scientific.net/AMM.421.512.
[42] Y. Eren, ?. B. Küçükdemiral, and ?. Üsto?lu, Chapter 2 - Introduction to Optimization, in Optimization in Renewable Energy Systems, (2017) 27–74. doi: 10.1016/B978-0-08-101041-9.00002-8.
[43] C. Mechalikh, H. Taktak, and F. Moussa, PureEdgeSim: A Simulation Toolkit for Performance Evaluation of Cloud Fog and Pure Edge Computing Environments, in 2019 International Conference on High-Performance Computing & Simulation (HPCS), Dublin, Ireland, (2019) doi: 10.1109/HPCS48598.2019.9188059.
[44] https://www.covid19india.org/