Multiphysics Process Simulation in the Working Area of the Plasma Unit of the Multicomponent Nanocomposite Coating Plant

Multiphysics Process Simulation in the Working Area of the Plasma Unit of the Multicomponent Nanocomposite Coating Plant

© 2022 by IJETT Journal
Volume-70 Issue-5
Year of Publication : 2022
Authors : Maxim Zuev , Aslan A. Tatarkanov , Naur Z. Ivanov , Maxim S. Mikhailov, Alexander N. Muranov
DOI :  10.14445/22315381/IJETT-V70I5P235

How to Cite?

Maxim Zuev , Aslan A. Tatarkanov , Naur Z. Ivanov , Maxim S. Mikhailov, Alexander N. Muranov, "Multiphysics Process Simulation in the Working Area of the Plasma Unit of the Multicomponent Nanocomposite Coating Plant," International Journal of Engineering Trends and Technology, vol. 70, no. 5, pp. 317-327, 2022. Crossref,

This research is dedicated to plants for deposition of multicomponent nanocomposite coatings. Increasing the service life of machinery is one of the highest priorities due to the natural limitation of mineral resources used in mechanical engineering. Sputtering techniques of special purpose coatings improving surface strength characteristics, wear resistance, microhardness, corrosion resistance, and many other parameters related to the structural-phase state of the product surface layer have become widespread in recent decades. Such coatings are used in strategically important industries: machine-tool engineering, power engineering, chemical industry, aircraft engineering, automotive industry, shipbuilding, space engineering, and other industries with severe operating conditions. Due to the high complexity, significant materials, and time consumption in the design and development of the plant for multicomponent nanocomposite coatings, modern software and computer complexes for simulating multiphysics processes would seem useful. The cathode-anode assembly of the plant plasmatron unit was simulated with the system of plasma separation from heavy components. The need to consider physical processes in the interelectrode region while designing plasmatron units was shown since the efficiency of the sputtering process and the service life of the plant units largely depend on the discharge parameters and the resulting plasma jet. There is increased wear of copper nozzles at high current density and arc temperature values. The coating characteristics are also affected by structural and flow phase composition. The simulation results confirm the efficiency of the developed plasma separator. The separator configuration, coil arrangement scheme, current strength, and other system efficiency parameters were determined.

Plasma sputtering, Nanocomposite coating, Complex composition coating, Plasma separator, Multiphysics processes. .

[1] A. B. Semenov, O. N. Fomina, A. Muranov, A Kutsbakh, The modern market of blank productions in mechanical engineering and the problem of standardization of new materials and technological processes. Advanced Materials & Technologies. Tambov, Russia: Tambov State Technical University. 1(13) (2019) 3-11.
[2] B. Cantor, Multicomponent and high entropy alloys. Basel, Switzerland: MDPI. Entropy 16(9) (2014) 4749-4768.
[3] M. Kang, J. W. Won, K. R. Lim, H. J. Kwon, S. M. Seo, Y. S. Na, Compositional approach to designing FCC high-entropy alloys with an enlarged equiaxed zone. Basel, Switzerland: MDPI. Metals 8(1) (2018) 54.
[4] A. G. Al-Sehemi, A. A. Al-Ghamdi, N. T. Dishovsky, P. Malinova, N. T. Atanasov, G. L. Atanasova, Comparative Study on the Properties of Natural Rubber Composites Containing Kaolin and Calcined Kaolin and on the Possibilities to Apply Thereof as Antenna Substrates. Lafayatte, USA: Seventh Sense Research Group. IJETT International Journal of Material Science and Engineering 4(3) (2018) 8-22.
[5] S. Egorov, A. Olejnik, A. Kapitanov, I. Alexandrov, Buildup forming on tools at mechanical metal surface-hardening. Cham, Switzerland: Springer. The International Journal of Advanced Manufacturing Technology 117 (2016) 2237–2242.
[6] A. Oleinik, A. Kapitanov, I. Alexandrov, A. Tatarkanov, Calculation methodology for geometrical characteristics of the forming tool for rib cold rolling. Belgrad, Serbia: Institute for Research and Design in Economics. Journal of Applied Engineering Science 18(2) (2020) 292-300.
[7] A. Olejnik, A. Kapitanov, I. Alexandrov, A. Tatarkanov Designing a tool for cold knurling of fins. Belgrad, Serbia: Institut za istraživanja i projektovanja u privredi. Belgrad, Serbia: Institute for Research and Design in Economics. Journal of Applied Engineering Science 18(3) (2020) 305-312.
[8] Z. Huda, Metallurgy for Physicists and Engineers: Fundamentals, Applications, and Calculations. Boca Raton, USA:CRC Press (2020). [Online]. Available:
[9] A. M. Gatey, S. S. Hosmani, R. Singh, S. Suwas, Surface Engineering of Stainless Steels: Role of Surface Mechanical Attrition Treatment. Bäch, Switzerland: Trans Tech Publications Ltd. Advanced Materials Research 794 (2013) 238-247. [Online]. Available:
[10] M. Klaus, C Genzel, Multilayer Systems For Cutting Tools: The Relationship Between Coating Design, Surface Processing, and Residual Stress. Weinheim, Germany: Wiley. Advanced Engineering Materials 13(8) (2011) 845-850. [Online]. Available: Https://Onlinelibrary.Wiley.Com/Doi/Epdf/10.1002/Adem.201000306
[11] M. Y. Kulikov, M. V. Yagodkin, M. A. Larionov, S. A. Sheptunov, The anodic mechanical machining application for thread cutting of small diameters, in Proc. 2017 International Conference Quality Management, Transport and Information Security, Information Technologies, (2017) 739-740.
[12] P. Malinovskis, S. Fritze, L. Riekehr, L. von Fieandt, J. Cedervall, D. Rehnlund, L. Nyholm, E. Lewin, U. Jansson, Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Amsterdam, Netherlands: Elsevier. Materials & Design 149 (2018) 51-62.
[13] A. Srinath, K. von Fieandt, R. Lindblad, S. Fritze, M. Korvela, J. Petersson, E. Lewin, L. Nyholm, Influence of the nitrogen content on the corrosion resistance multicomponent AlCrNbYZrN coatings. Amsterdam, Netherlands: Elsevier. Corrosion Science 188 (2021) 109557.
[14] M. Aliofkhazraei, N. Ali, M. Chipara, N. B. Laidani, J. T. M. De Hosson, Handbook of modern coating technologies: Fabrication methods and functional properties. 1st Edition. Amsterdam, Netherlands: Elsevier (2021).
[15] A. D. Pogrebnjak, A. A. Bagdasaryan, A. Pshyk, K. Dyadyura, Adaptive multicomponent nanocomposite coatings in surface engineering. Bristol, UK: IOP Publishing. Physics-Uspekhi, 60(6) (2017) 586-607.
[16] S. E. Alexandrov, K. S. Tyurikov, D. A. Kirilenko, A. V. Redkov, A. A. Lipovskii, Low?temperature atmospheric pressure plasma?enhanced CVD of nanocomposite coatings molybdenum disulfide (filler)–silicon oxide (matrix). Weinheim, Germany: Wiley. Advanced Materials Interfaces, 4(18) (2017) 1700241.
[17] S. C. Velasco, A. Cavaleiro, S. Carvalho, Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Amsterdam, Netherlands: Elsevier. Progress in Materials Science, 84 (2016) 158-191.
[18] A. Lelevic, F. C. Walsh, Electrodeposition of Ni-P composite coatings: A review. Amsterdam, Netherlands: Elsevier. Surface & Coatings Technology, 378 (2019) 124803.
[19] S. Yuan, N. Lin, Q. Zeng, H. Zhang, X. Liu, Z. Wang, Y. Wu, Recent developments in research of double glow plasma surface alloying technology: A brief review. Amsterdam, Netherlands: Elsevier. Journal of Materials Research and Technology, 9(3) (2020) 6859-6882.
[20] I. A. Alexandrov, A. N. Muranov, M. S. Mikhailov, The analysis of ways to increase the durability of shut-off valves loaded elements. Tambov, Russia: Tambov State Technical University. Journal of Advanced Materials and Technologies, 6(3) (2021) 225-235.
[21] A. A. Vereschaka, F. Milovich, N. Andreev, N. Sitnikov, I. Alexandrov, A. Muranov, M. Mikhailov, A Tatarkanov, Efficiency of application (Mo, Al)N-based coatings with the inclusion of Ti, Zr or Cr during the turning of steel of nickel-based alloy. Basel, Switzerland: MDPI. Coatings, 11(11) (2021) 1271.
[22] V. M. Beresnev, A. D. Pogrebnyak, P. V. Turbin, S. N. Dub, G. V. Kirik, M. K. Kylyshkanov, O. M. Shvets, V. I. Gritsenko, A. P. Shipilenko, Tribotechnical and Mechanical Properties of Ti-Al-N Nanocomposite Coatings Deposited by the Ion-Plasma Method. Basel, Switzerland: Mdpi. Journal of Friction And Wear , 31(5) (2010) 349-355. Https://Doi.Org/10.3103/S1068366610050053
[23] A. A. Vereschaka, F. Milovich, M. Migranov, N. Andreev, I. Alexandrov, A. Muranov, M. Mikhailov, A. Tatarkanov, Investigation of the Tribological and Operational Properties of (Mex, Moy, Al1-(X+Y))N (Me–Ti, Zr Or Cr) Coatings. Amsterdam, Netherlands: Elsevier. Tribology International, 165(1) (2022) 107305. Https://Doi.Org/10.1016/J.Triboint.2021.107305
[24] A. S. Vereschaka, D. V. Sladkov, A. Y. Aksenenko, N. N. Sitnikov, Control of Structure And Properties of Nanostructured Multilayer Composite Coatings Applied to Cutting Tools to Improve the Efficiency of Technological Cutting Operations. Bäch, Switzerland: Trans Tech Publications Ltd. Journal of Nanoresearch, 37 (2016) 51-57. [Online]. Available: Https://Doi.Org/10.4028/Www.Scientific.Net/Jnanor.37.51
[25] J. P. Trelles, C. Chazelas, A. Vardelle And J. V. R. Heberlein, Arc Plasma Torch Modeling. Cham, Switzerland: Springer. Journal of Thermal Spray Technology, 18(5) (2009) 728-752. [Online]. Available: Https://Arxiv.Org/Ftp/Arxiv/Papers/1301/1301.0650.Pdf
[26] S. M. Modir Khazeni, J. P. Trelles, Towards Comprehensive Modeling And Simulation Approach for Turbulent Non-Equilibrium Plasma Flows, in Proc. 22nd International Symposium on Plasma Chemistry, (2015). [Online]. Available: Https://Www.Researchgate.Net/Publication/275351834_Towards_A_Comprehensive_Modelling_And_Simulation_Approach_For_Tu rbulent_Nonequilibrium_Plasma_Flows
[27] M. Keidar, I. I. Beilis. Plasma Engineering. Second Edition. Cambridge Ma, Usa: Academic Press, (2018). [Online]. Available: Https://Www.Sciencedirect.Com/Book/9780128137024/Plasma-Engineering#Book-Description
[28] J.-K. Kim, Et Al. Effect of Magnetic Field Structure Near Cathode on The Arc Spot Stability of Filtered Vacuum Arc Source of Graphite. Amsterdam, Netherlands: Elsevier. Surface And Coatings Technology, 124(2-3) (2000) 135-141. [Online]. Available: Https://Www.Sciencedirect.Com/Science/Article/Pii/S025789729900643x?Via%3dihub
[29] P. M. Martin, Handbook of Deposition Technologies for Films And Coatings: Science, Applications, And Technology. Third Edition. New York, Usa: William Andrew, (2010). [Online]. Available: Https://Www.Sciencedirect.Com/Book/9780815520313/Handbook-ofDeposition-Technologies-For-Films-And-Coatings
[30] C. Paternoster, I. Zhirkov, M.-P. Delplancke-Ogletree, Structural and Mechanical Characterization of Nanostructured Titanium Oxide Thin Films Deposited By Filtered Cathodic Vacuum Arc. Amsterdam, Netherlands: Elsevier. Surface And Coatings Technology 227 (2013) 42-47. [Online]. Available: Https://Www.Sciencedirect.Com/Science/Article/Pii/S0257897213000935?Via%3dihub
[31] R.-K. Dai, A Parallel Monte Carlo Simulation on Cluster System For Particle Transport, in Proc. 2009 International Conference on Artificial Intelligence and Computational Intelligence, Paper 2 (2009). [Online]. Available: Https://Ieeexplore.Ieee.Org/Document/5376368/Metrics#Metrics