
International Journal of Engineering Trends and Technology (IJETT) – Volume 10 Number 7 - Apr 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 352

Job Scheduling Based on Virtual Abstractions in
Cloud

B.Parkavi# 1, G.Malathy*2

#PG Scholar, *Research Scholar

Department of Computer science and Engineering,

K S R Institute for Engineering and Technology,

Tiruchengode, Namakkal-637215, India

Abstract-- Cloud computing is a provisioning of services
in a timely, on-demand manner, to allow the scaling up
and down of resources. Job scheduling is one of the major
issues in the public cloud which concerns availability of
resources in the datacenter. Data center need to achieve
certain level of utilization of its nodes while maintaining
level of responsiveness of parallel jobs. Existing
scheduling schemes make use of backfilling strategies
which pre-empt shortest jobs to execute when jobs at head
of the queue have unavailable of resources. This results in
starvation of larger jobs, reduced throughput and
underutilization of resources. In this paper, job scheduling
based on virtual abstraction scheme is proposed for
efficient scheduling of jobs in k- cloud data center with
multiple computing capacities which solves large-scale
static scheduling problem in cloud.

 Keywords-- Abstraction scheduler, cloud computing,
parallel workload, virtual machine

I. INTRODUCTION
Cloud computing is a model for enabling convenient,

on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1]. Client can access resources pooled in the
cloud by requesting cloud service providers and based on
client’s request, resource is provisioned to the client by pay-
per-usage demand. During resource provisioning, there may
occur delay of response from cloud service provider since,
cloud is a way of distributed computing, some other clients
may request the same resource (or) the server is busy with its
resource allocation. Hence there is a need for scheduling
based on client’s request and availability of resources in the
datacenter. Resource scheduling problem is similar to
Banker’s algorithm which prevents deadlock by denying or
postponing the request if it determines that accepting the
request could put the system in an unsafe state. When a new
process enters a system, it must declare the maximum number
of instances of each resource type that may not exceed the
total number of resources in the system.

Scheduling in distributed systems is spreading the load on

processors and maximizing their utilization while minimizing

the total task execution time. Fig 1 shows an outline of job
scheduling in which the resources are allocated from
datacenter to the client. Hence, in this paper, we proposed an
Abstraction scheduler for scheduling the tasks regarding the
requested job and the computational resources needed by it.
Allocating the jobs to idle and appropriate data center node by
reducing the execution time and improving parallel job
responsiveness is the major role behind this proposed system.

Fig 1: Job scheduling

Clients from various locations will be assigned in a job
queue based on their needs. Job scheduler is responsible for
allocation of required resources to the client which is rendered
from datacenter [2]. Cloud service provider acts as
intermediate between the datacenter broker and client. The
availability of resources is checked dynamically and idle
resources are allocated towards the client based on their
needs. This scheduling of resources to the client is the major
issue in cloud despite time and efficiency.

II. RELATED WORK
U. Schwiegelshohn and R. Yahyapour [3] has analysed the

working of First-Come-First-Serve(FCFS) algorithm in which
each job specifies the number of nodes required and the
scheduler will processes those jobs in the order of their
arrival. When there is a sufficient number of nodes to process
the job then the scheduler dispatches the job to run on these
nodes else it waits for the currently running job to finish. So it
causes fragmentation of nodes and delay in getting resources.

D. Feitelson and M. Jettee [4] have proposed that gang

scheduling improves node utilization and responsiveness over

Client

Job queue Job scheduler

Resources

Datacenter

International Journal of Engineering Trends and Technology (IJETT) – Volume X Issue Y- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 353

parallel jobs. It allows sharing of resources among multiple
parallel jobs in which the computing capacity of a node is
divided into time slices. The allocation of time slices of
different nodes to parallel processes is coordinated by OS
support. It manages to make all the processes of a job
progress together so that one process will not be in sleep state
when another process needs to communicate with it. So it
stretches the execution time of individual jobs.

Wiseman and D. Feitelson [5] has proposed that Paired

gang scheduling tries to overcome the drawbacks of gang
scheduling in which it utilizes the system resources well
without causing interference between the processes of
competing jobs. The processes will not have to wait much
because a process which occupies the CPU most of the time
will be matched with a process that occupies an I/O device
most of the time, so they will not interfere with each other’s
work. On the other hand, the CPU and the I/O devices will
not be idle while there are jobs which can be executed.

 Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam

[6] have proposed an effective scheduling strategy to improve
response time, throughput, and utilization of resources in
cloud. Gang-scheduling and backfilling are two optimization
techniques that operate on orthogonal axes, space for
backfilling and time for gang scheduling and the proposed
technique is made by treating each of the virtual machines
created by gang-scheduling as a target for backfilling. The
difficulty arises in estimating the execution time for parallel
jobs so migration is taken into account which improves the
performance of gang-scheduling without the need for job
execution time estimates.

Xiaocheng Liu, Chen Wang, Bing Zhou, Junliang Chen,

Ting Yang, and Albert Y. Zomaya [7] has proposed CMCBF
algorithm which overcomes the drawbacks of gang
scheduling algorithm. It ensures a job to run in foreground
VMs whenever the number of foreground VMs that are either
idle or occupied by jobs arriving later than it satisfies its node
requirement. It also allows jobs to run in background VMs
simultaneously with those foreground VMs to improve node
utilization. Shachee V Parikh and RichaSinha [8] has
proposed a double level priority based task scheduling in
which three different waiting-queues are considered such as
low-priority queue, medium-priority queue and high-priority
queue and the local scheduler maintains these queues. The
scheduler needs to effectively schedule tasks in terms of both
performance and energy consumption. For this, power-
threshold of processor is monitored. When a processor
reaches its power threshold, the task is assigned into another
processor.

Hence an abstract representation of resource availability in
the virtual machines of the concerned datacenters is known to
effectively satisfy the client needs.

III. PROPOSED WORK
Virtual abstraction based job scheduling scheme is

proposed for efficient scheduling of jobs in k- cloud
datacenter with multiple computing capacity by using
abstraction refinement. Scheduler based on abstraction first
attempts to solve scheduling problem with abstract
representations of job and computing resources. With small
abstract representations, scheduling is done fast. If obtained
schedule does not meet specified quality, then scheduler
refines job and datacenter abstractions and again solves
scheduling problem.

Model a job as dataflow of tasks and data center as

set of computation nodes connected by communication links.
Scheduling concerned assigning nodes and time intervals to
tasks in a job [9]. Tasks start at a time only when all its
preceding tasks are finished and task’s inputs are available at
the assigned node. Job abstractions represent pieces of
computation (tasks) and data transferred between tasks
(objects).Each task has an associated duration and each object
has an associated size. Abstract job is obtained from concrete
job by grouping together tasks to abstract tasks and ignoring
data dependencies between tasks in each group.

A. Cloud and parallel workloads
Cloud computing provide cost-effective solution for

running business applications through virtualization, scalable
distributed computing, data management and pay-as-you-go
pricing model. Data center handles applications with high-
performance computing needs and runs parallel jobs most of
the time [10]. Parallel workload requires a certain number of
data center nodes to run which are fragmented by parallel jobs
with different node number requirements. If number of
available nodes cannot satisfy requirement of an incoming job
then nodes remain idle.

Parallel programming involves computing, communication,
and synchronization phase. Process in a parallel job
frequently waits for data from other processes. During waiting
utilization of the node is low. Batch scheduling algorithm for
parallel jobs FCFS cause node fragmentation. Backfilling and
Gang scheduling minimize node fragmentation but utilization
degradation caused by parallelization.

B. Workload consolidation
Two workload consolidation experiments conducted to

improve node utilization and examine impact to execution
time of parallel jobs [11]. Collocate two VMs in each physical
node with same priority and two VMs with different
priorities,

 one is assigned a weight of 10,000 and
 other is assigned a weight of 1

High-priority VM is foreground VM andlow-priority one

background VM [7]. Background VM only runs, when
foreground VM is idle. When a foreground VM runs a job
with CPU utilization higher than 96 percent, collocating a

International Journal of Engineering Trends and Technology (IJETT) – Volume X Issue Y- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 354

VM to run in background does not benefit due to context
switching incurs overhead and background VM has very
small chance to get physical resource to run. When
foreground VM runs a job with low CPU utilization, job
running in collocated background VM get significant share of
physical resources to run. When a background job departs, the
scheduler scans queue according to the job arrival time and
place a matching job to run in available background VMs.

C. Abstraction scheduler
Job abstractions represent pieces of computation (tasks)

and data transferred between tasks (objects). Each task has an
associated duration and each object has an associated size.
Figure.3 shows system flow diagram. Abstract job is obtained
from concrete job by grouping together tasks such as abstract
tasks (called blocks) and ignoring data dependencies between
tasks in each group [12]. Duration of a block is the maximal
duration of represented concrete tasks. Instance of generic
abstraction refinement scheduler provides own
implementation of subroutines,

 initial abstraction
 schedule
 refine

Abstraction scheduler keeps track of free intervals on all
computing nodes in data center and uses information to
schedule blocks of tasks in job. Independent tasks in a parallel
job are scheduled simultaneously which leads to idea of cost
of maintaining set of free intervals on nodes in data center. It
presented an inverted indices used in search algorithms which
maintains a data structure and location of occurrences of data
center nodes [13]. Success of an abstraction refinement
depends on the quality of abstractions such that efficient
captures of concrete instance without keeping track of much
information.

D. K – Cloud Datacenter Scheduler
K-Tier data center scheduler starts with initial abstract job

obtained from input job by using job duration abstraction.
Initial abstract data center is obtained from input data
structure by collapsing all computation nodes into a single
node. Scheduler keeps job abstraction constant but refines
data center abstraction as required. Memory allocator
maintains a partition of the memory in order to find best
suitable free memory block. Each refinement step splits some
block into two new blocks. Partition is represented as a binary
tree [12]. When an allocated memory is freed then
compaction easily done by collapsing the tree. Best-fit
allocation is used to schedule tasks from one job to nodes
close to each other.Representation of data center changes with
each allocation.

IV. SYSTEM ARCHITECTURE
Job scheduling is based on multiple computing resources

and abstraction refinement. Once the parallel jobs get into the
job queue, the abstraction scheduler will search for

availability of needed process which is rendered to the
parallel jobs despite CPU processing time. Fig2 shows the
outline of system architecture. Initial abstract data center is
obtained from input data structure by collapsing all
computation nodes into a single node. Scheduler keeps job
abstraction constant but refines data center abstraction as
required. It will give the details of virtual machines regarding
the process storage. In the k-cloud datacenter, datacenters are
partitioned into clusters based on the location in the
worldwide. It will fetch the resource location and if there is
lack of process then it move from the nearest cluster to reduce
the communication cost.

Fig 2: System Architecture

V. SIMULATION RESULT AND DISCUSSION
CloudSim-3.0 is used as a simulation tool with NetBeans

7.1 in this work. CloudSim is an extensible simulation toolkit
that enables modeling and simulation n of Cloud computing
systems and application provisioning environments. The
CloudSim toolkit supports both system and behavior
modeling of Cloud system components such as data centers,
virtual machines (VMs) and resource provisioning policies. A
dataset containing job list is given as input to the simulator
and the job list contains user id, coordinate, process,
bandwidth, required time and required instruction.

Job scheduling based on
Virtual abstraction

k- Cloud
data center

Scheduling Jobs

Multiple computing
capacities

Abstraction
refinement

Scheduling problem

Abstract
representations

Computing
resources

International Journal of Engineering Trends and Technology (IJETT) – Volume X Issue Y- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 355

TABLE 1: Job List

Id Coordinate Process BW Required
time

Required
instruction

1
31-42-45-

N
Google
Nexus 454 48 454

2 35-56-37-
S

Toshiba
Canvas 387 71 321

3 45-65-48-
N SanDisk 8GB 423 13 113

4 75-50-48-
N

Seagate
backup 93 55 57

5 57-47-39-
E Lava iris 123 15 87

6 57-87-45-
N K7 security 394 22 97

7 36-45-57-
S USB shield 169 30 54

8 35-47-67-
S Titanic movie 444 66 95

9 57-42-81-
N hip hop songs 200 45 88

10 57-81-64-
N Word Power 615 77 34

TABLE 2: Process selection
User

id
Process

id Coordinate Process BW Required
time

1 1 31-42-45-N Google
Nexus 454 48

2 4 35-56-37-S Seagate
backup 93 55

5 4 45-65-48-N Seagate
backup 93 55

3 9 75-50-48-N hip hop
songs 200 45

3 3 57-47-39-E SanDisk
8GB 423 13

2 7 57-87-45-N USB
shield 169 30

7 7 36-45-57-S USB
shield 169 30

7 2 35-47-67-S Toshiba
Canvas 387 71

TABLE 3: CMCBF Scheduling

VMs Process
id Coordinate Process BW User

id

VM1 1 31-42-45-N Google Nexus 454 1

VM1 9 75-50-48-N hip hop songs 200 3

VM3 3 57-47-39-E SanDisk 8GB 423 3

VM4 4 35-56-37-S Seagate backup 93 2,5

VM3 7 36-45-57-S USB shield 169 2,7

VM3 2 35-47-67-S Toshiba Canvas 387 7

Table 1 shows the dataset for job list containing
process and its properties. Table 2 shows process id created
for each user’s request. A user may request for more than one
process to execute his/her application. Table 3 shows CMCBF
scheduling, where the VMs are shared among multiple users
which in turn reduce the process waiting time and under-
utilization of servers to a considerable amount.

TABLE 4: Abstraction Scheduler

VM
 id

Process
id Coordinate Process BW User

id

VM1
1
9

31-42-45-N
75-50-48-N

Google Nexus
hip hop songs

454
200

1
3

VM3
3
7
2

57-47-39-E
36-45-57-S
35-47-67-S

SanDisk 8GB
USB shield

Toshiba Canvas

423
169
387

3
2,7
7

VM4 4 35-56-37-S Seagate backup 93 2,5

TABLE 5: K-Cloud Datacenter Scheduler

Partition
id

VM
id

Process
id Coordinate Process moved

to location
User

id

1 VM1
1
9

31-42-45-N
75-50-48-N Nil 1

3

4 VM3
3
7
2

57-47-39-E
36-45-57-S
35-47-67-S

Nil
Nil

58-67-28-N

3
2,7
7

2 VM4 4 35-56-37-S Nil 2,5

Here processes 1 and 9 shared VM1; similarly

processes 3, 7 and 2 are shared by VM3 which improves
datacenter node utilization to a higher level. Table 4 shows
the abstraction scheduler which depicts the process
availability on corresponding virtual machines. Now the
cloud is partitioned into clusters based on location
coordinates. If there is a starvation of process then it is moved
to the nearest cluster which will be time consuming and cost
consuming location from the user’s location as it is shown in
table 5.

The performance comparison of proposed work with

existing methods and later on comparison of different
approaches is made using different performance metrics such
as number of data centers, number of jobs, scheduler time
intervals, scheduler memory rate, number of Process, and
CPU cycles for abstraction scheduler. It is clear from the
graph shown below in fig 3, the proposed work have higher
performance ratio compared to the existing method.

International Journal of Engineering Trends and Technology (IJETT) – Volume X Issue Y- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 356

VI. CONCLUSION AND FUTURE
ENHANCEMENT

Since the proposed system is a virtual abstraction based
scheduling of process to the client in a parallel processing.
The K-Cloud partitioning of datacenter node for the allocation
of jobs and computing resources which schedules effectively
the parallel workloads in multiple cloud datacenters is solely
based on the user’s requests in a proactive manner rather than
a reactive manner. So the performance has truly higher in the
proposed model compared to the existing model on the basis
of average response time, datacenter node utilization and job
responsiveness.

 Fig 3: Node utilization

In our future work, we will exploit mechanisms that can
effectively schedule the process among the intra-cluster of
datacenter resources which may further improve the node
utilization and responsiveness for parallel workload in the
cloud.

REFERENCES
[1] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. ‘‘Cloud

computing and emerging IT platforms: vision, hype and reality for
delivering computing as the 5th utility’’, Future Gener. Comput. Syst.,
25(6), pp. 599–616 (2009).

[2] Peter Mell, Timothy Grance, “The NIST Definition of Cloud
Computing”, NIST (National Institute of Standards and Technology)
Special Publication 800-145.

[3] U. Schwiegelshohn and R. Yahyapour, “Analysis of First-Come-First-
Serve Parallel Job Scheduling,” Proc. Ninth Ann. ACM-SIAM Symp.
Discrete Algorithms, pp. 629-638, 1998.

[4] D. Feitelson and M. Jettee, “Improved Utilization and Responsiveness
with Gang Scheduling,” Proc. Workshop Job Scheduling Strategies for
Parallel Processing, pp. 238-261, 1997.

[5] Y. Wiseman and D. Feitelson, “Paired Gang Scheduling,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 6, pp. 581-592, June 2003.

[6] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An
Integrated Approach to Parallel Scheduling Using Gang-Scheduling,
Backfilling, and Migration,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 3, pp. 236-247, Mar. 2003.

[7] Xiaocheng Liu, Chen Wang, Bing Zhou, Junliang Chen, “Priority-Based
Consolidation of Parallel Workloads in the Cloud”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 24, No. 9, September 2013.

[8] Shachee V Parikh, RichaSinha, “Double Level Priority Based Task
Scheduling with Energy Awareness in Cloud Computing”, International
Journal of Engineering and Technology, 2011.

[9] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms of the Maui
Scheduler,” Proc. Workshop Job Scheduling Strategies for Parallel
Processing, pp. 87-102, 2001.

[10] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of Workload in Mpps,” Proc. Workshop Job Scheduling
Strategies for Parallel Processing, pp. 95-116, 1997.

[11] R. Fujimoto, A. Malik, and A. Park, “Parallel and Distributed Simulation
in the Cloud,” Int’l Simulation Magazine, Soc. for Modeling and
Simulation, vol. 1, no. 3, 2010.

[12] T. A. Henzinger, V. Singh, T.Wies, and D. Zufferey, “Scheduling large
jobs by abstraction refinement”, in
EuroSYS, pages 329–342, 2011.

[13] Thomas A. Henzinger, Anmol V. Singh, Vasu Singh, Thomas Wies, and
Damien Zufferey, “Flex-PRICE: Flexible provisioning of resources in
a cloud environment”, IEEE International Conference on Cloud
Computing, 2010.

