
International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 616

An Advanced Honeypot System for
Efficient Capture and

Analysis of Network Attack Traffic
Balaji Darapareddy#1, Vijayadeep Gummadi#2

1 M.Tech (CSE),Gudlavalleru Engineering College, Gudlavalleru

2 Associate Professor(CSE), Gudlavalleru Engineering College, Gudlavalleru.

ABSTRACT:

A Honeypot is an information system resource used to
divert attackers and hackers away from critical resources
as well as a tool to study an attacker’s methods. One of
the most widely used tools is honeyd for creating
honeypots. The logs generated by honeyd can grow very
large in size when there is heavy attack traffic in the
system, thus consuming a lot of disk space. The huge log
size poses difficulty when they are processed and
analyzed by security analysts as they consume a lot of
time and resources. We propose a system which
addresses these issues. It has two important modules. The
first module is to capture packets in the network ie either
lan or web. The second module is a analyzer the captured
packets in order to generate summarized captured
packet information and graphs for the security
administrators. This application also monitors packet
information regarding web traffic. The experimental
results show that the space required by log file reduces
significantly and reports generated dynamically as per
user needs.

I INTRODUCTION

By increasing the usage of the Internet and
implementing commonly used tasks through it, the concept
of distributed applications has been considerably grown.
Currently firewall and Intrusion Detection Systems (IDS)
have been practically developed to block variety of threats
through incoming
port connections.

INTRUSION DETECTION SYSTEMS (IDS)

Intrusion detection is the process of monitoring
computers or networks for unauthorized entrance or activity.
IDS can also be used to monitor network traffic, thereby
detecting if a system is being targeted by a network attack.
There are two basic types of intrusion detection: host-based
(HIDS) and network-based (NIDS). Each has a distinct
approach to monitoring and securing data, and each has
distinct advantages and

disadvantages. Host-based IDSs examine data held on
individual computers that serve as hosts; they are highly
effective for detecting insider abuses. Examples of host-
based IDS implementations include Windows NT/2000
Security Event Logs, and UNIX Syslog. On the other hand,
Network based intrusion detection systems analyze data
packets that travel over the actual network. These packets are
examined and sometimes compared with empirical data to
verify whether they are of malicious or benign nature [2]. An
example of NIDS is Snort [3], which is an open source
network intrusion detection system that performs real-time
traffic analysis. It can be used to detect a variety of attacks
and probes, such as buffer overflows, stealth port scans, and
OS fingerprinting attempts. There are two basic techniques
used to detect intruders: anomaly detection, misuse detection
(signature detection). Anomaly Detection is designed to
uncover abnormal patterns of behavior, the IDS establish a
baseline of normal usage patterns, and anything that widely
deviates from it is flagged as a possible intrusion [5]. Misuse
Detection, commonly called signature detection, uses
specifically known patterns of unauthorized behavior to
predict and detect subsequent similar attempts. These
specific patterns are called signatures. Therefore in case of
Misuse Detection at the heart of IDS is the attack signature.
The signatures can be generated through approaches like
Network Grapping / Pattern Matching, Protocol
Decode/Analysis, Heuristic and Honeypot. Current intrusion
detection systems often work as misuse detectors, where the
packets in the monitored network are compared against a
repository of signatures that define characteristics of an
intrusion. Successful matching causes alerts to be fired. The
signature often consists of one or more specific binary
patterns found in a given network packet. The signature can
be described as a Boolean relation called rule [6]. An
intrusion detection system is able to recognize an attack only
when it knows a signature for this attack, and thus require
continuous updates of their signature database. Also
continuous research to analyze new attacks and find their
signatures is a must.
Moreover, a slight change in the attack scenario may be
enough to alter the attack signature and thus fool a signature
filter. They are consequently vulnerable to polymorphic
attacks and other evasion techniques which are expected to
grow in the near future. At present, the creation of these
signatures is a tedious process that requires detailed

International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 617

knowledge of each software exploit that is to be captured and
a large pool of ASCII-log data to analyze.

Honeypots

The honeypot has emerged as an effective tool for observing
and understanding intruder’s toolkits, tactics, and
motivations. A honeypot suspects every packet transmitted
to/from it, giving it the ability to collect highly concentrated
and less noisy datasets for network attack analysis. “A
honeypot is an information system resource whose alue lies
in unauthorized or illicit use of that resource” [6]. Honeypot
is an exciting technology with great potential for the field of
network security. It can be understood as a resource used to
divert attackers and hackers away from critical resources i.e.
it is an observed trap. It can also be used to study an
attacker’s methods and tools. The value of a Honeypot lies in
unauthorized and illicit use. Neither any authorized activity
runs on these resources nor do they have any production
value i.e. no legitimate activity is carried out. It provides a
large amount of valuable information for analysis and can
detect variety of attacks, working even within encrypted
environment. It acts as a cherished observation and early
warning tool but on the contrary it should be used with
caution as it has risks associated with it.

II BACKGROUND AND RELATED WORK

Network Deception using Honeypots

A honeypot is an excellent deception tool to use on a
network. First, a honeypot allows us to present controlled
information to our adversaries. Second, a honeypot allows us
to collect information about our attackers. Finally, a
honeypot can serve as a deterrent against future attacks.
There are plenty of honeypot programs out there, from
relatively free ones like Back-Officer Friendly [7], to
commercial ones like Symantec Decoy Server [8]. As
mentioned before, the Honeyd program created by Niels
Provos is a low-interaction honeypot that emulates single or
multiple hosts on the network with different operating
system signatures and
services on a single machine. The current implementation of
the Honeyd program is built using the C language and is
made for BSD, Linux, or other variant of UNIX operating
systems. It utilizes the OS fingerprints signature file from
NMAP [6] and Xprobe2 rc1 [3] to spoof responses to OS
scans. Furthermore, the Honeyd program is
capable of simulating many network environment variables
such as packet delay, congestion, routing, and forwarding.
The WS Honeypot is a high interaction honeypot. It provides
real web services to ensure a real interaction with attackers.
The services offered by the honeypot can be deployed by
using two technologies, Axis or .Net. The administrator of
the honeypot can customize his own web service, or he can
simply use an automated tool integrated into the honeypot
that can create from a WSDL (Web Services Description
Language) file a real service that can be deployed in the
honeypot. This tool offers flexibility in the behavior of the
honeypot and in the choice of its features. Honeypots store
collected information in log files. This
information is used to learn new techniques, tools and
motivations of hackers to better protect the production

systems against attacks. The main problem related to logging
is the great amount of data that has to be analyzed by a
human expert. Much of these collected data represent the
normal behavior of the system and don't have any relation
with attacks. So the human expert will be overwhelmed with
a large amount of data in audit trails and may fail to notice
severe threats. For this reason, we choose to use, in the WS
Honeypot, machine learning techniques to analyze data and
detect attacks in a semi-automatic way. These techniques
help us to learn the normal behavior of activities in the
honeypot, and consequently, detect any significant deviation
from this normal behavior and provide it to the expert to
decide whether it constitutes a true positive.

Existing Architecture

The role of the WS Honeypot is to simulate the behavior of a
Web service. It incorporates automated tools to capture and
analyze clients activities, especially those issued from
attackers. The existing system architecture is shown in the
following Figure. It consists of following components:

Traffic Capture
Traffic logging is an important task to collect and classify
client activities. This component includes traffic capturing
mechanisms and monitoring tools to intercept and parse
requests and responses for Web services simulated on the
WS Honeypot. The Web service requests are formatted in
XML language and encapsulated in SOAP messages which
use HTTP as the transport protocol. The content inspection
of these messages is necessary to detect attacks.

Whenever a connection attempt is made by an attacker in
unused IP space, honeyd which continuously monitors it acts
being a victim. It interacts with the attacker and logs the
malicious activities. To illustrate in case a telnet server is
emulated then attacker’s login and password along with other
commands can certainly be logged. The emulated services
are deterministic in his or her functioning and behave
because we are part of a predetermined solution for
documented actions. In the event the action is unknown then
a mistkea message is made. Benefits associated with
emulating various operating systems and services are to the
point it assists the honeypot to blend together with the
production network so we can learn about various attack
methods used on various services. To illustrate with a
Win2000 server an IIS webserver will be emulated with a
Linux system an Apache webserver. Honeyd mimics
legitimate services through direct manipulation of all the
network stack of the designated OS. Some of these are TCP,
UDP, and ICMP. Honeyd was developed this fashion to take
care of popular network security scanning tools an example
would be Nmap [8].

International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 618

Each computer-system among the Honeyd virtual network
emulates an OS “personality”, and that is an explicit match
associated with an Nmap or Xprobe[13] prescribed OS
“signature”. The signatures are offered inside an Nmap and
Xprobe fingerprint file. The files enumerate the flag
sequence of TCP/IP communication that would be used to
distinguish different OS platforms. Therefore, when Nmap
scans Honeyd it detects the personality signature and
recognizes it, subsequently identifying the OS[6]. A number
of features used in Honeyd are simulation of large network
topologies, setting configurable network characteristics like
latency, loss and bandwidth etc, integration of physical
machines into network topology, support of multiple entry
routers to serve multiple networks,tunneling for using a
distributed networks. Time consuming and annoying work of
search through logs generated by honeyd was simplified by a
wide range of tools which were developed for creating
summary of honeyd logs.
Honeysum [9] is a kind of name tool designed in Perl. It may
generate summary of honeyd logs based upon Internet
protocol addresses, protocols, ports etc. It generates top use
of source and port; also it shows array of connections per
hour. It is capable of generating summary both in text and
also HTML showing outcomes in type of graphs.
HoneyView [10] was another such tool. It is faster than
honeysum while it possesses a php based web interface
which provides better consumer experience.
 Swamill [11] is yet another such software although it's not
limited to only honeyd. It truly is universal log file analysis
and reporting software. It might process log files generated
by many security tools, sniffers, applications etc. The
analyzers take some processing time to generate the reports.
This can be time intensive when logs are of large size, and
that is usually in the case of heavy attack scenarios like
DDoS. The large size of the log also requires lot of space on
the disk. Hence reducing this log sizes are another important
issue. These issues are addressed by the proposed model.

Problem in existing honeypot:

 Difficulty in analyzing the log records due to large
data.

 Need to configure in each and every host inside the
network.

 Huge number.of log files posses difficulty when
they are processed and analyzed by security analysts
as they consume a lot of time and resources.

 Existing system doesn’t provide summarized
information about each host based on protocols.

 Existing system provide static graphical
representation.

 Packet information is stored in textual format
which is not secured.

 Existing system is suffering from categorizing the
normal and abnormal behavior of a system when
Network environment is too complex.

III. PROPOSED FRAMEWORK

Below figure 1 represents overall architecture of the present
system.First this sytem captures all packet and then each host
packet information is stored in the database for future
reference. After storing in the database the real time analyzer

gives the real time packets information in the form of
graphical representation dynamically.
Functional Modules
• Enabling NIC interface
• Installing Win Pcap library
• J-HoneyPot captures packets by the help of Win Pcap
library.
• Java Native Interface is required to run our advanced J-
HoneyPot system.
• Capturing the packets ,Processing and storing
them in database
• Dynamic graphical representation with honeypot.

Fig 1: Proposed Architecture

Win Pcap library
• Win Pcap library is a powerful set of library files which are
used to perform various tasks like
– scanning available network adaptors
– obtaining information about the network adaptors.
– capture network packets using one of the network interface
cards of the computer, filter the captured packets, to obtain
only the desired ones.
The implementers of the pcap API wrote it in C, so other
languages such as Java, .NET languages, and scripting
languages generally use Pcap library to interact with NIC
cards. Therefore the WinPcap or LibPcap library is essential
for running efficient J-HoneyPot application on Windows
and Linux environments.

Processing and storing

The processing of the log is done by changing the format of
the records slightly. A couple of new fields are added that
help in doing this job. A number of records are considered at
a time and they are processed to find whether they belong to
a particular flow. The processing module waits for these
numbers of records and then starts execution. By flow we
mean that the packets have same source IP address, source
port, destination IP address, destination port number, flags (if
any). Suppose x records are found belonging to a particular
flow. The time stamp of first record is the first field, the time
in the time-stamp of the last record is added as the second
field and number of records x comes in as the third field.
Rest whole record is copied down. If a flow contains only
one record then the original record is copied as it is. Thus, in
the worst case also the log is not going to increase. From the
knowledge of attack traffic and the tools that are used to

International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 619

attack it can be easily verified that it is very less probable
case. Hence the system is going to decrease the log size in
most of the cases without losing information.The new record
format is shown in Fig .
2011-01-18-11:09:39.6092 11:09:40.0283 45 tcp(6) -
192.168.111.105 119 192.168.111.212 3515: 52 A
[Windows]

Algorithm to filter packets

Step 1: open the interface
Step 2: Start capturing packets
• for each packet pack
a) set filter=‘ TCP or IP’
b) temp[]=capturesetfilter(filter)
c) if(temp[]==‘TCP’)
d) store pack dest port, seq, src port, syn to DB
else
e)store identifier(v4.0), dest port, src port, sync to DB.
Setp 3: Sort DB according to sequence number in the TCP
table.
Step 4: Sort the DB according to IP addresses.
Step 5: End

Algorithm to capture n/w packets

Step 1:Get list of all network interfaces and store them
in NetworkInterface[]
Step 2: Get each Network Interface name and its MAC
addresses in the NetworkInterface[]
Step 3: Choose NetworkInterface to capture packets in
promiscuous mode.
(In non-promiscuous mode, when a NIC receives a frame,
it normally drops it unless the frame is addressed to
that NIC's MAC address or is a broadcast or multicast
frame, thus in Promiscuous mode allowing the
computer to read frames intended for other machines
or network devices)
Step 4: Set no.of Packets to capture. (infinate -1)
Step 5: Print the packets in the console.
Step 6: End

Presentation Module

The files generated above were given as input to the Gnuplot
tool. The graphs thus obtained can be used by the security
analyst to strengthen the security of the production network.
The pictorial representation is much easier to comprehend
and have been used since a very long time by other analyzers
as well. At this point it can be pointed out that the already
existing analyzers can also process the log file if the code is
changed slightly to incorporate the change in format of the
log records.Info-packet The Info-packet is a standardised
representation of packet header fields of any encapsulating
protocol. For any protocol, an Info-packet contains fields that
are common to every protocol and also fields that are
protocol specific. Common fields in an Info-packet include
the packet header size, the packet size (data + packet header).
Protocol specific fields for IP, for example, include source
and destination IP addresses, while for TCP, for example,

they include the source and destination ports, see table . Info-
packets mainly contain integers and strings. These data types
are easier to manipulate and so making the task of packet
processing lighter
.
Protocol: 1P
Total length.: 1500
Encap. Protocol: 17
Version: 4
Data length.: 1480
Time To Live: 255
IP Source: 141.35.14.26
IP Destination: 141.35.14.31
Header length: 20
Table 1: Some Contents of an IP Info-packet

This system takes the network data packet capture, and then
carry on the analysis and the statistics. In the capture, it also
can be set the necessary capture filter to reduce the system
burden according to demand. The captured data can be
promptly preserved for future use. Figure illustrates the
Program flow diagram.

Fig 2: Packet capturing in jpcap

Capturing, preservation and analysis of data packets is the
key to program. Using HONEYPOT for capturing and
analysis data packet general need following process:
Capturing, preservation and analysis of data packets is the
key to program. Using HONEYPOT for capturing and
analysis data packet general need following process:
 (1) Creates an executive interface. When a packet is
captured, the method of data packets analysis in
PacketReceiver interface defined is invoked to analyze it by
HONEYPOTCaptor.processPacket (). public class
HONEYPOTTip implements PacketReceiver
(2) Searches device, returns to a string to represent
Adapter NetworkInterface[] devices = HONEYPOTCaptor.
getDeviceList();
(3) Select monitoring device NetworkInterface deviceName
= devices[0];
(4) Turns on the adapter, if calls successfully, returns to a
type of HONEYPOTCaptor object. It realizes through
HONEYPOTCaptor.openDevice() method. The method
needs four parameters: the device is to be opened, the largest
number of bytes read from the device once, the device will
be set to indicate whether the promiscuous mode Boolean

International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 620

(true, false) value and the subsequent call processPacket ()
method to use to the value of overtime. HONEYPOTCaptor
HONEYPOT = HONEYPOTCaptor.openDevice
(deviceName, 2000, true, 20);
(5) Starts to capture data packets. Call processPacket ()
or loopPacket () started listening. These two modes are with
two parameters: The capture most large package number
may be - 1 (note there is no restriction), an instance of the
class carries out PacketReceiver. HONEYPOT.
processPacket (-1, new HONEYPOTTip());
(6) Stops the capture, closes the device HONEYPOT.close();

IV. EXPERIMENTAL RESULTS

Proposed program is used to develop progam Honeypot for
data packet capture analysis. Choose the sub-menu "start
capture" under "capture data packets" menu , pop-up dialog
box of the choice device and the establishment capture
package option, in this selected by the device for the capture
and set network card promiscuous mode, and determine the
length and the filter information of the data packet captured,
then start the data packet capture. Figure demonstrates an
Ethernet data frame captured. Source MAC address is
00:02:3f:02:3b:ed, Destination MAC address is 00: 11: 11
:02:59:e8, it means that the frame is sent from host A to host
B. Version of 4 means that the version of the IP protocol is
IPv4. Header length of 20, means the header length of degree
is 20 bytes. Total length of 1500 indicates that the IP
datagram (or fragment) total length is 1500 bytes.
Identification of Oxebb2(60338) indicates that the IP
datagram (or fragment) identification is 60338. Flag segment
as Flags is a three-bit field. The first bit is reserved.

Fig 3: Selecting adaptor for packets capture

Fig 4: Proposed Honeypot capturing network.

Ethernet Frame Captured

The second bit is called the do not fragment bit, its value is 0
means the datagram can be fragmented if necessary. The
third bit is called the more fragment bit, its value is 1 means
the datagram is not the last fragment, there are more
fragments after this one. Fragment offset of 1480 shows the
relative position of this fragment with respect to the whole
datagram is 1480 bytes, that is the former fragment contains
the first 1480 bytes data of the higher protocol; Time to live
of 64 means the IP datagram's lifetime is 64 hops; Protocol
of ICMP(OxOl) indicates that the higher level protocol that
uses the services of the IP layer is ICMP, this field specifies
the final destination protocol is to which the IP datagram
should be delivered. Header checksum is the error detection
method used by most TCP/IP protocols, its value is Oxe746.
Source of 192.168.0.10 and Destination of .168.0.20
indicates that the IP datagram(or fragment) is sent from host
A to host B. Data of 1480 indicates that the fragment carries
1480 bytes data of the higher layer. Test to ascertain
discrepancies between the captured results and IP
fragmentation principle again, as ICMP carries 3000 bytes,
coupled with 8 bytes of its header, the total bytes is 3008,
with the MTU of data link layer protocol in Ethernet is 1500,
then get rid of 20 bytes IP header, each fragment can only
get 1480 bytes, the offset of the data in the original datagram
measured in units of eight bytes. so 3008 bytes are divided
into three parts: 1480, 1480, 48, then the length of the three
datagram fragment should be 1500, 1500, 68 after plusing 20
bytes of the IP header, that is consistent with the results of
the captured data completely.

International Journal of Engineering Trends and Technology- Volume3Issue5- 2012

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 621

Fig 5: Summarized packet information

Fig 6: LAN packets statistics

Our tests show that the proposed system can
manage to improve the detection accuracy in comparison
with the conventional honeyd and IDS in the following
figure. As it is clear, in the proposed system the objective is
to recheck the attacking packets in order to avoid the false
positives while both honeyd and IDS have their own false
positive ratio which is definitely greater than what we gained
as a cooperation of these two systems.

V. CONCLUSION AND FUTURE WORK

Proposed packet HONEYPOT is effectively enhanced
by corporating features like making the packet
HONEYPOT program platform independent, filtering
the packets using filter table, filtering the suspect
content from the network traffic and gather and report
network statistics. A packet HONEYPOT is not just
only for an admin’s tool. It can be used for network
traffic monitoring, traffic analysis, troubleshooting and
other useful purposes.In future this honeypot can be
embedded in real time websites so that it gives
effective detection rates for packet attacks and spoofing
types of attacks. In future this honeypot is extended to
find web application vulnerabilities for electronic
applications.

REFERENCES:

[1] Provos, N., Honeyd - Network Rhapsody for You. 2002-2003, Center for
Information Technology Integration - Computer Science Department of
University of Michigan. http://www.citi.umich.edu/u/provos/hon eyd/
[2] Roesch, M., Snort - The Open Source Network Intrusion Detection
System. 2003. http://www.snort.org/
[3] Song, D., libdnet. 2003. http://libdnet.sourceforge.net/
[4] Spitzner, L., Honeypots: Tracking Hackers. 2002: Addison-Wesley Pub
Co. 480.
[5] Spitzner, L., Definition and value of Honeypots, in Tracking Hackers.
2003. http://www.trackinghackers. com/papers/honeypots.html
[6] Heberlein, L.T., G. Dim, K. Levilt, B. Mukhejee, J. Wood, and D.
Wolber, I‘ A network security monitor,’’ Proc., 1990 Symposium on
Research in Security and Privacy, pp. 296-304, Oakland, CA, May 1990
[7] Staniford-Chen S., S. Cheung, R Crawford, M. Dilger, J. Frank, J.
Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “ GPICG- A Graph-
Based Intrusion Detection System for Large Networks,” The 19th National
Information Systems Security Conference
[8I Anton Chuvakin, “Honeynets: High Value Security Data”: Analysis of
real attacks launched at a honeypot, Network Security, vol. 2003, Issue 8,
pp. 11-15, August 2003.
[9] L. Spitzner, “Honeytokens: The Other Honeypot.,” in Internet:
http://www.Securityfocus. com/infocus/1713, 2003.
[10] Honeyd, http://www.honeyd.org/, 2008.

