Pi Controlled DC-DC Converter Based on Three-State Switching Cell
Citation
Sithara Azeez, Sajini Susan Mathai"Pi Controlled DC-DC Converter Based on Three-State Switching Cell", International Journal of Engineering Trends and Technology (IJETT), V29(4),196-203 November 2015. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
This paper introduces a new family of
PWM DC-DC non-isolated converters By
substituting the converter-cell all the DC-DC
converter topologies (the buck configuration) is
obtained. The new converters are generated using
three-state commutation cells. Comprising two
active switches, two diodes and coupled inductors.
This topology has 3 switching stages, thus the name
given as three state switching cell. In these circuits
only part of load power is transferred by the
switches so switching stress is less and high power
output can be attained. Advantages of this topology
are less size and volume of components, wide area of
continuous conduction mode, low conduction and
commutation losses, and low input and output
current ripple. Due to these features, the new
converters are suitable for low voltage and high
current application. Step down converter have
overlapping and non-overlapping modes. When duty
ratio is less than 0.5, we can achieve nonoverlapping
and continuous conduction mode.
Simulations of the existing converter are done in
MATALAB/SIMULINK and an experimental
prototype was implemented.
References
[1] M. Berkhout and L. Dooper, ?Class-D audio
amplifiers in mobile applications,IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 57, no. 5,pp. 992–
1002, May 2010
[2] E. K. Sato,M. Kinoshita, Y. Yamamoto, and T.
Amboh, ?Redundant highdensityhigh-efficiency
double-conversion uninterruptible power
system,IEEE Trans. Ind. Appl., vol. 46, no. 4, pp.
1525–1533, Jul./Aug. 2010
[3] S. V. Araujo, R. P. Torrico-Bascop´e, and G. V.
Torrico-Bascop´e, ?Highly efficient high step-up
converter for fuel-cell power processingbased onthree state commutation cell,? IEEE Trans. Ind. Electron.,
vol. 57, no. 6,
[4] Z. Amjadi and S. S. Williamson, ?Power-electronicsbased
solutions for plug-in hybrid electric vehicle
energy storage and management systems,IEEE Trans.
Ind. Electron., vol. 57, no. 2, pp. 608–616, Feb. 2010.
[5] G. Yao, Y. Shen,W. Li, and X. He, ?A new soft
switching snubber for the interleaved boost
converters, in Proc. 35th Annu. IEEE Power
Electron.Spec. Conf., Jun. 2004, pp. 3765–3769
[6] I.Matsuura, K. M. Smith, Jr., and K. M. Smedley, ?A
comparison of activeand passive switching methods
for PWM converters, in Proc. 29th Annu.IEEE Power
Electron. Spec. Conf., May 1998, vol. 1, pp. 94–100.
[7] G. Hua and F. C. Lee, ?Soft-switching techniques in
PWM converters,IEEE Trans. Ind. Electron., vol. 42,
no. 6, pp. 595–603, Dec. 1995.
[8] K. Fujiwara and H. Nomura, ?A novel lossless
passive snubber for softswitching boost-type
converters, IEEE Trans. Power Electron., vol. 14,no.
6, pp. 1065–1069, Nov. 1999.
[9] D. S. Oliveira, Jr., C. E. A. Silva, R. P. Torrico-
Bascop´e, F. L. Tofoli,C. A. Bissochi, Jr., J. B.
Vieira, Jr., V. J. Farias, and L. C. de Freitas,?Analysis,
design, and experimentation of a double forward
converterwith soft switching characteristics for all
switches, IEEE Trans. PowerElectron., vol. 26, no. 8,
pp. 2137–2148, Aug. 2011
[10] J. P. Rodrigues, S. A. Mussa,M. L.Heldwein, and A.
J. Perin, ?Three-level ZVS active clamping PWM for
the dc–dc buck converter, IEEE Trans. Power
Electron., vol. 24, no. 10, pp. 2249–2258, Aug. 2009.
[11] Y. Jang and M. M. Jovanovic, ?Interleaved boost
converter with intrinsic voltage-doubler characteristic
for universal-line PFC front end, IEEETrans. Power
Electron., vol. 22, no. 4, pp. 1394–1401, Jul. 2007.
[12] D. J. Perreault and J. G. Kassakian, ?Distributed
interleaving of paralleled power converters, IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44,
no. 8, pp. 728–734, Aug. 1997.
[13] S. V. Araujo, R. P. Torrico- Bascop´e, and G. V.
Torrico-Bascop´e, ?Highly efficient high step-up
converter for fuel-cell power processing based on
three-state commutation cell, IEEE Trans. Ind.
Electron., vol. 57, no. 6, pp. 1987–1997, Jun. 2010.
[14] S. V. Araujo, R. P. Torrico-Bascop´e, G. V. Torrico-
Bascop´e, and L. Menezes, ?Step-up converter with
high voltage gain employing threestate switching cell
and voltagemultiplier, in Proc. Power Electron. Spec.
Conf., 2008, pp. 2271–2277.
[15] R. A. da Camara, C.M. T. Cruz, and R. P. Torrico-
Bascop´e, ?Boost based on three-state switching cell
for UPS applications, in Proc. Brazilian Power
Electron. Conf., 2009, pp. 313–318.
[16] G. V. Torrico-Bascope, R. P. Torrico-Bascop´e, D. S.
Oliveira, Jr., S.V. Ara´ujo, F. L. M. Antunes, and C.
G. C. Branco, ?A generalized high voltage gain boost
converter based on three-state switching cell, in Proc.
IEEE Int. Symp. Ind. Electron., 2006, pp. 1927–1932.
[17] G. V. Torrico- Bascop´e, R. P. Torrico-Bascop´e, D.
S. Oliveira, Jr., S. V. Ara´ujo, F. L. M. Antunes, and
C. G. C. Branco, ?A high step-up converter based on
three-state switching cell, in Proc. IEEE Int. Symd.
Electron., 2006, pp. 998–1003.
[18] R. P. Torrico-Bascop´e, C. G. C. Branco, G. V.
Torrico-Bascop´e, C. M. T. Cruz, F. A. A. de Souza,
and L. H. S. C. Barreto, ?A new isolated DC–DC
boost converter using three-state switching cell, in
Proc. Appl. Power Electron. Conf. Expo., 2008, pp.
607–613.
[19] E. E. Landsman, ?A unifying derivation of switching
regulator topologies, in Proc. IEEE Power Electron.
Spec. Conf., 1979, pp. 239–243.
[20] S. Busquets-Monge, S. Alepuz, and J. Bordonau, ?A
bidirectional multilevel boost–buck dc–dc converter,
ITrans. Power Electron., vol. 26, no. 8, pp. 2172–
2183, Aug. 2011
[21] J. P. R. Balestero, F. L. Tofoli, R. C. Fernandes, G.
V. Torrico-Bascop´e,and F. J. M. Seixas, ?Power
factor correction boost converter based onthe threestate
switching cell, IEEE Trans. Ind. Electron., vol.
59, no. 3,pp. 1565–1577, Mar. 2012.
[22] M. Roslan, K. H. Ahmed, S. J. Finney, and
B.W.Williams, ?Improved instantaneousaverage
current-sharing control scheme for parallel-connected
inverter considering line impedance impact in
microgrid networks, IEEETrans. Power Electron.,
vol. 26, no. 3, pp. 702–716, Mar. 2011.
[23] N. Genc and I. Iskender, ?DSP-based current sharing
of average current controlled two-cell interleaved
boost power factor correction converter, IET Power
Electron., vol. 4, no. 9, pp. 1015–1022, 2011.
[24] Y.-M. Chen, S.-Y. Tseng, C.-T. Tsai, and T.-F. Wu,
?Interleaved buck converters with a single-capacitor
turn-off snubber, IEEE Trans. Aerosp. Electron.
Syst., vol. 40, no. 3, pp. 954–967, Jul. 2004.
[25] K. M. Smith, Jr. and K.M. Smedley, ?Properties and
synthesis of lossless, passive soft switching
converters, in Proc. 1st Int. Congr. Israel Energy
Power Motion Control, May 1997, pp. 112–119.
[26] L. X. Chao, Z. Bo, Y. J. Sheng, J. Gallagher, and F. J.
Gen, ?A nonisolatedvoltage regulator module with
integrating coupled-inductor, in Proc. Power
Electron. Spec. Conf., 2005, pp. 438–442.
Keywords
Buck Converter, Boost Converter,
DC-DC Converters, Three State Switching Cell
(3SSC).