Pi Controlled DC-DC Converter Based on Three-State Switching Cell

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2015 by IJETT Journal
Volume-29 Number-4
Year of Publication : 2015
Authors : Sithara Azeez, Sajini Susan Mathai
DOI :  10.14445/22315381/IJETT-V29P237

Citation 

Sithara Azeez, Sajini Susan Mathai"Pi Controlled DC-DC Converter Based on Three-State Switching Cell", International Journal of Engineering Trends and Technology (IJETT), V29(4),196-203 November 2015. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
This paper introduces a new family of PWM DC-DC non-isolated converters By substituting the converter-cell all the DC-DC converter topologies (the buck configuration) is obtained. The new converters are generated using three-state commutation cells. Comprising two active switches, two diodes and coupled inductors. This topology has 3 switching stages, thus the name given as three state switching cell. In these circuits only part of load power is transferred by the switches so switching stress is less and high power output can be attained. Advantages of this topology are less size and volume of components, wide area of continuous conduction mode, low conduction and commutation losses, and low input and output current ripple. Due to these features, the new converters are suitable for low voltage and high current application. Step down converter have overlapping and non-overlapping modes. When duty ratio is less than 0.5, we can achieve nonoverlapping and continuous conduction mode. Simulations of the existing converter are done in MATALAB/SIMULINK and an experimental prototype was implemented.

 References

[1] M. Berkhout and L. Dooper, ?Class-D audio amplifiers in mobile applications,IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 5,pp. 992– 1002, May 2010
[2] E. K. Sato,M. Kinoshita, Y. Yamamoto, and T. Amboh, ?Redundant highdensityhigh-efficiency double-conversion uninterruptible power system,IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1525–1533, Jul./Aug. 2010
[3] S. V. Araujo, R. P. Torrico-Bascop´e, and G. V. Torrico-Bascop´e, ?Highly efficient high step-up converter for fuel-cell power processingbased onthree state commutation cell,? IEEE Trans. Ind. Electron., vol. 57, no. 6,
[4] Z. Amjadi and S. S. Williamson, ?Power-electronicsbased solutions for plug-in hybrid electric vehicle energy storage and management systems,IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 608–616, Feb. 2010.
[5] G. Yao, Y. Shen,W. Li, and X. He, ?A new soft switching snubber for the interleaved boost converters, in Proc. 35th Annu. IEEE Power Electron.Spec. Conf., Jun. 2004, pp. 3765–3769
[6] I.Matsuura, K. M. Smith, Jr., and K. M. Smedley, ?A comparison of activeand passive switching methods for PWM converters, in Proc. 29th Annu.IEEE Power Electron. Spec. Conf., May 1998, vol. 1, pp. 94–100.
[7] G. Hua and F. C. Lee, ?Soft-switching techniques in PWM converters,IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595–603, Dec. 1995.
[8] K. Fujiwara and H. Nomura, ?A novel lossless passive snubber for softswitching boost-type converters, IEEE Trans. Power Electron., vol. 14,no. 6, pp. 1065–1069, Nov. 1999.
[9] D. S. Oliveira, Jr., C. E. A. Silva, R. P. Torrico- Bascop´e, F. L. Tofoli,C. A. Bissochi, Jr., J. B. Vieira, Jr., V. J. Farias, and L. C. de Freitas,?Analysis, design, and experimentation of a double forward converterwith soft switching characteristics for all switches, IEEE Trans. PowerElectron., vol. 26, no. 8, pp. 2137–2148, Aug. 2011
[10] J. P. Rodrigues, S. A. Mussa,M. L.Heldwein, and A. J. Perin, ?Three-level ZVS active clamping PWM for the dc–dc buck converter, IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2249–2258, Aug. 2009.
[11] Y. Jang and M. M. Jovanovic, ?Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end, IEEETrans. Power Electron., vol. 22, no. 4, pp. 1394–1401, Jul. 2007.
[12] D. J. Perreault and J. G. Kassakian, ?Distributed interleaving of paralleled power converters, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. 8, pp. 728–734, Aug. 1997.
[13] S. V. Araujo, R. P. Torrico- Bascop´e, and G. V. Torrico-Bascop´e, ?Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell, IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1987–1997, Jun. 2010.
[14] S. V. Araujo, R. P. Torrico-Bascop´e, G. V. Torrico- Bascop´e, and L. Menezes, ?Step-up converter with high voltage gain employing threestate switching cell and voltagemultiplier, in Proc. Power Electron. Spec. Conf., 2008, pp. 2271–2277.
[15] R. A. da Camara, C.M. T. Cruz, and R. P. Torrico- Bascop´e, ?Boost based on three-state switching cell for UPS applications, in Proc. Brazilian Power Electron. Conf., 2009, pp. 313–318.
[16] G. V. Torrico-Bascope, R. P. Torrico-Bascop´e, D. S. Oliveira, Jr., S.V. Ara´ujo, F. L. M. Antunes, and C. G. C. Branco, ?A generalized high voltage gain boost converter based on three-state switching cell, in Proc. IEEE Int. Symp. Ind. Electron., 2006, pp. 1927–1932.
[17] G. V. Torrico- Bascop´e, R. P. Torrico-Bascop´e, D. S. Oliveira, Jr., S. V. Ara´ujo, F. L. M. Antunes, and C. G. C. Branco, ?A high step-up converter based on three-state switching cell, in Proc. IEEE Int. Symd. Electron., 2006, pp. 998–1003.
[18] R. P. Torrico-Bascop´e, C. G. C. Branco, G. V. Torrico-Bascop´e, C. M. T. Cruz, F. A. A. de Souza, and L. H. S. C. Barreto, ?A new isolated DC–DC boost converter using three-state switching cell, in Proc. Appl. Power Electron. Conf. Expo., 2008, pp. 607–613.
[19] E. E. Landsman, ?A unifying derivation of switching regulator topologies, in Proc. IEEE Power Electron. Spec. Conf., 1979, pp. 239–243.
[20] S. Busquets-Monge, S. Alepuz, and J. Bordonau, ?A bidirectional multilevel boost–buck dc–dc converter, ITrans. Power Electron., vol. 26, no. 8, pp. 2172– 2183, Aug. 2011
[21] J. P. R. Balestero, F. L. Tofoli, R. C. Fernandes, G. V. Torrico-Bascop´e,and F. J. M. Seixas, ?Power factor correction boost converter based onthe threestate switching cell, IEEE Trans. Ind. Electron., vol. 59, no. 3,pp. 1565–1577, Mar. 2012.
[22] M. Roslan, K. H. Ahmed, S. J. Finney, and B.W.Williams, ?Improved instantaneousaverage current-sharing control scheme for parallel-connected inverter considering line impedance impact in microgrid networks, IEEETrans. Power Electron., vol. 26, no. 3, pp. 702–716, Mar. 2011.
[23] N. Genc and I. Iskender, ?DSP-based current sharing of average current controlled two-cell interleaved boost power factor correction converter, IET Power Electron., vol. 4, no. 9, pp. 1015–1022, 2011.
[24] Y.-M. Chen, S.-Y. Tseng, C.-T. Tsai, and T.-F. Wu, ?Interleaved buck converters with a single-capacitor turn-off snubber, IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 3, pp. 954–967, Jul. 2004.
[25] K. M. Smith, Jr. and K.M. Smedley, ?Properties and synthesis of lossless, passive soft switching converters, in Proc. 1st Int. Congr. Israel Energy Power Motion Control, May 1997, pp. 112–119.
[26] L. X. Chao, Z. Bo, Y. J. Sheng, J. Gallagher, and F. J. Gen, ?A nonisolatedvoltage regulator module with integrating coupled-inductor, in Proc. Power Electron. Spec. Conf., 2005, pp. 438–442.

Keywords
Buck Converter, Boost Converter, DC-DC Converters, Three State Switching Cell (3SSC).