Corrosion analysis in different cookware materials

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2016 by IJETT Journal
Volume-34 Number-8
Year of Publication : 2016
Authors : Javier Martínez-Gomez, Gonzalo Guerrón, Ricardo A. Narvaez C
DOI :  10.14445/22315381/IJETT-V34P276

Citation 

Javier Martínez-Gomez, Gonzalo Guerrón, Ricardo A. Narvaez C "Corrosion analysis in different cookware materials", International Journal of Engineering Trends and Technology (IJETT), V34(8),389-393 April 2016. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
The efficient use of energy is a priority when a technology migration of technology plan is being held. Several factors must be taken into account in order to achieve this goal. In this paper the migration from liquefied petroleum gas based cookers to electric induction cookers is shown. To accomplish this study several test have been performed in three kinds of pots made of different materials: stainless steel, enameled cast iron and aluminium. The purpose of this test is to see how different materials for cookware would be affected by introducing them into a salt spray chamber. These tests try to reach conditions similar to cooking with salt. The results of this study try to emphasize the selection in terms of corrosion of the best material to produce the cookware suitable for induction cookers. The standard test methods ASTM B895 ? 05 have allowed to evaluate the corrosion property. The wrong choice of the material can lead to an inadequate life cycle assessment of the pot. After completing this research, it has been found that the enameled cast iron and the stainless steel present higher corrosion resistance.

 References

[1] G. Milne., and B. Boardman, ?Making cold homes warmer: the effect of energy efficiency improvements in low-income homes A report to the Energy Action Grants Agency Charitable Trust. Energy Policy, 28(6-7), 411–424. doi:10.1016/S0301-4215(00)00019-7, 2000.
[2] A. Joelsson, and, L. Gustavsson, ?District heating and energy efficiency in detached houses of differing size and construction Applied Energy, 86, 126–134. doi:10.1016/j.apenergy.2008.03.0127, 2009.
[3] B. Schlomann, C. Rohde, and P. Plötz, 2014 ?Dimensions of energy efficiency in a political context. Energy Efficiency, 1–19. doi:10.1007/s12053-014-9280-8, 2014.
[4] P. Sreedharan, ?Recent estimates of energy efficiency potential in the USA. Energy Efficiency, 6(3), 433–445. doi:10.1007/s12053-012-9183-5. 2013.
[5] K. K. Arthur et al. ?Experimental Study of Induction Cooker Fire Hazard. Procedia Engineering, 52, 13–22. doi:10.1016/j.proeng.2013.02.098, 2013
[6] L. Barragan, D. Navarro, J. Acero, I. Urriza, & J. Burdío. ?FPGA implementation of a switching frequency modulation circuit for EMI reduction in resonant inverters for induction heating appliances. IEEE Transactions on Industrial Electronics 55 (1), 11-20, 2008.
[7] Marco Orozco, Javier Martínez, Augusto Riofrío, Diego Vaca, Diego Carrión ?Estudio de ensayos de eficiencia energética, concavidad, convexidad y rugosidad en menaje para cocinas de inducción Memorias del Congreso latinoamericano de ingeniería mecánica Colim VIII, pp 255- 261, 2014.
[8] Augusto Riofrío, Diego Vaca, Diego Carrión Marco Orozco, Javier Martínez, ?Análisis del consumo energético en procesos de cocción eficiente para el sector residencial Memorias del Congreso latinoamericano de ingeniería mecánica Colim VIII, pp 268-273, 2014.
[9] R. Winston and H. Henry, ?Corrosion and corrosion control: An introduction to Corrosion Sciencie and Engineering, pp. 1-603, Nov 1985.
[10] S. D. Cramer and B. S. Covino, Jr, ?ASM Handbook Volume 13A Corrosion: Fundamentals, Testing, and Protection, vol 13 pp. 1–2454, 2003.
[11] Nordsveen, S. Neši?, R. Nyborg, and A. Stangeland, ?A Mechanistic Model for Carbon Dioxide Corrosion of Mild Steel in the Presence of Protective Iron Carbonate Films— Part 1: Theory and Verification Corrosion Vol. 59, No. 5, pp. 443-456., May 2004
[12] P. R. Swann ?Dislocation Substructure vs Transgranular Stress Corrosion Susceptibility Of Single Phase Alloys Corrosion Vol. 19, No. 3, pp. 102t-114t., Mar 1963
[13] G. S. Chen, M. Gao, and R. P. Wei ?Microconstituent- Induced Pitting Corrosion in Aluminum Alloy 2024-T3 Corrosion Vol. 52, No. 1, pp. 8-15., Jan 1996.
[14] M. B. Kermani and A. Morshed, ?Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium. Corrosion, Corrosion Vol. 59, No. 8, pp. 659-683, Agu. 2003
[15] D. H. Davies and G. T. Burstein. ?The Effects of Bicarbonate on the Corrosion and Passivation of Iron Corrosion:, Vol. 36, No. 8, pp. 416-422. August 1980.
[16] E. Khamis, F. Bellucci, R. M. Latanision, and E. S. H. El- Ashry ?Acid Corrosion Inhibition of Nickel by 2- (Triphenosphoranylidene) Succinic Anhydride Corrosion: Vol. 47, No. 9, pp. 677-686. September 1991.
[17] S. Nesic, J. Postlethwaite, and S. Olsen, ?An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions. Corrosion Vol. 52, No. 4, pp. 280-294., April 1996
[18] C. D. Waard and D. E. Milliams, ?Carbonic Acid Corrosion of Steel. Corrosion Vol. 31, No. 5, pp. 177-181., May 1975
[19] F. Mansfeld, M. W. Kendig, and S. Tsai, ?Recording and Analysis of AC Impedance Data for Corrosion Studies. Corrosion Vol. 38, No. 11, pp. 570-580, 1982

Keywords
component; corrosion, cookware, induction cookware, pots, induction pots, ASTM B895 – 05.