Denoiser Properties; An analysis

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2017 by IJETT Journal
Volume-46 Number-5
Year of Publication : 2017
Authors : Chege Simon, Dr. Suman Mishra
DOI :  10.14445/22315381/IJETT-V46P249


Chege Simon, Dr. Suman Mishra "Denoiser Properties; An analysis", International Journal of Engineering Trends and Technology (IJETT), V46(5),282-288 April 2017. ISSN:2231-5381. published by seventh sense research group

The main role of a denoising algorithm is to remove noise, errors or perturbations from a signal. A lot of research has been achieved in this area and therefore today’s denoisers can effectively remove large amounts of additive noise. A compressive sensing (CS) reconstruction algorithm scheme seeks to recover a structured signal acquired using a relatively small number of randomized measurements. Typical CS reconstruction algorithms schemes can be cast as iteratively estimating a signal from a perturbed observation. There is an ongoing research on how to effectively employ a generic Denoiser in a CS reconstruction algorithm. The AMP reconstruction technique has proven to integrate with most denoisers (DAMP) and offers an enhanced CS recovery performance while operating tens of times faster than competing methods. This paper seeks to look into an explanation of the exceptional performance of D-AMP by analyzing some of its theoretical properties and features.


[1] C. A. Metzler, A. Maleki, and R. G. Baraniuk. (Apr. 2014). “From denoising to compressed sensing.” [Online].Available:
[2] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon celli, “Image denoising using scale mixtures of Gaussians in the wavelet domain,” IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Nov. 2003.
[3] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2, pp. 490–530, 2005.
[4] U. S. Kamilov, S. Rangan, M. Unser, and A. K. Fletcher, “Approximate message passing with consistent parameter estimation and applications to sparse learning,” in Proc. Adv. Neural Process. Syst. (NIPS), 2012, pp. 2438–2446.
[5] C. Chen, E. W. Tramel, and J. E. Fowler, “Compressedsensing recovery of images and video using multihypothesis predictions,” in Proc. 45thAsilomar Conf. Signals Syst. Comput., Nov. 2011, pp. 1193– 1198.
[6] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with applications tocompressed sensing,” IEEE Trans.Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.
[7] S. Kudekar and H. D. Pfister, “The effect of spatial coupling on compressive sensing,” in Proc. 48th Annu. Allerton Conf. Commun.,Control, Comput., Sep./Oct. 2010, pp. 347–353.
[8] K. Egiazarian, A. Foi, and V. Katkovnik, “Compressed sensing image reconstruction via recursive spatially adaptive filtering,” in Proc. IEEEInt. Conf. Image Process. (ICIP), vol. 1. Sep./Oct. 2007, pp. I-549–I- 552.
[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.
[10] S. Mun and J. E. Fowler, “Block compressed sensing of images using directional transforms,” in Proc. 16th IEEE Int. Conf. Image Process., Nov. 2009, pp. 3021– 3024.

Denoising, Compressive Sensing, Approximate Message Passing.