Multi Parametric Extraction and Validation of Series DC Contact RF MEMS Switches for Low-Frequency Wireless Communication Applications
Citation
MLA Style: K Rajasekhar, S.Sunithamani "Multi Parametric Extraction and Validation of Series DC Contact RF MEMS Switches for Low-Frequency Wireless Communication Applications" International Journal of Engineering Trends and Technology 69.2(2021):194-200.
APA Style:K Rajasekhar, S.Sunithamani. Multi Parametric Extraction and Validation of Series DC Contact RF MEMS Switches for Low-Frequency Wireless Communication Applications. International Journal of Engineering Trends and Technology, 69(2), 194-200.
Abstract
In this paper, we have designed and analyzed different MEMS structures suitable for series DC contact RF MEMS switches. To validate the proposed switch, we have extracted the multiple parameters at the simulation level. Overall, we have analyzed three structures, i.e., fixed-fixed, crab leg, and folded. Compared to other structures, the folded structure is offering a good performance. So, the folded structure-based series DC contact RF MEMS switch requires an actuation voltage of 4.5 V, eigenfrequency 6640 Hz, isolation loss - 40 dB, and insertion loss - 0.2 dB. The switch performance is analyzed within frequency band 0.2-20 GHz; after observing the behavior of the switch, it is clear that the switch is suitable for low-frequency wireless communication applications like Bluetooth, Wi-Fi, and WiMax.
Reference
[1] Sung-min Sim, Yeonsu Lee, Yun-Ho Jang, Yong-Seok Lee, Yong-Kweon Kim, Ignacio Llamas-Garro, and Jung-Mu Kim, A 50-100 GHz ohmic contact SPDT RF MEMS silicon switch with dual-axis movement Microelectronic Engineering, Doi.https://doi.org/10.1016/j.mee. 2016.05.008, 162(2016) 69-74.
[2] Jacopo Iannacci, RF-MEMS technology as an enabler of 5G: Low-loss ohmic switch tested up to 110 GHz, Sensors and Actuators A: Physical, Doi. https://doi.org/10.1016/j.sna.2018.07.005, (2018).
[3] Feixiang Kea, Jianmin Miao, Chee Wee Tanb, Reduction of squeeze-film damping in a wafer-level encapsulated RF MEMS DC shunt switch, Sensors, and Actuators A: Physical, Doi. 10.1016/j.sna.2011.07.015, 171,118-125, (2011).
[4] Igor E. Lysenko, Alexey V. Tkachenko, Elena V. Sherova, Alexander V. Nikitin, Analytical Approach in the Development of RF MEMS Switches, Electronics, vol.7, Doi.10.3390/electronics7120415, (2018).
[5] Sung-min Sim, Yeonsu Lee, Yun-Ho Jang, Yong-Seok Lee, Yong-Kweon Kim, Ignacio Llamas-Garro, Jung-Mu Kim, A 50–100 GHz ohmic contact SPDT RF MEMS silicon switch with dual-axis movement", Microelectronic Engineering, 162(2016) 69-74.
[6] Yan-qing Zhu, Lei Han, Ming Qin, Qing-an Huang, Novel DC-40 GHz MEMS series-shunt switch for high isolation and high power applications, Sensors and Actuators A: Physical, 214(2014) 101-110.
[7] Switch Ankur Saxena, Vimal Kumar Agrawal, Comparative Study of Cantilever RF MEMS, Materials Today: Proceedings, 4(2017) 10328–10331.
[8] Hee-Chul Lee, Jae-Hyoung Park, Yong-Hee Park, Development of shunt type ohmic RF MEMS switches actuated by the piezoelectric cantilever, Sensors and Actuators A, 136(2007) 282–290.
[9] D. Birmpiliotisa, G. Stavrinidisb, M. Koutsourelia, G. Konstantinidisb, G. Papaioannoua, A. Ziaeic, A comparative study of nanostructured Silicon-Nitride electrical properties for potential application in RF-MEMS capacitive switches, Microelectronics Reliability, Doi. https://doi.org/10.1016/j.microrel.2019.06.052, (2019).
[10] F. Stoppel, T. Lisec, B. Wagner, W. Benecke, Bidirectionally actuated ohmic switches allowing sequential dual-contact operation for improved reliability, Procedia Engineering, 120(2015) 748 – 751.
[11] Song in Gong, Hui Shen, N. Scott Barker, Study of Broadband Cryogenic DC-Contact RF MEMS Switches, IEEE Transactions On Microwave Theory and Techniques, 57(12)(2009).
[12] Ryan C. Tung, Adam Fruehling, Dimitrios Peroulis, and Arvind Raman, Multiple Timescales and Modeling of Dynamic Bounce Phenomena in RF MEMS Switches, Journal of Microelectromechanical Systems, 23(1) (2014).
[13] Ali Attaran, Rashid Rashidzadeh, Ultra-low actuation voltage RF MEMS switch, Micro and Nano Systems Letters, (2015) Doi. 10.1186/s40486-015-0024-0.
[14] Vishram B. Sawanta, Suhas S. Mohitea, Laukik N. Cheulkar, Comprehensive contact material selection approach for RF MEMS switch, Science Direct Materials Today: Proceedings, 5(2018) 10704–10711.
[15] Christopher D. Nordquist, Christopher W. Dyck, Garth M. Kraus, Isak C. Reines, Charles L. Goldsmith, William D. Cowan, Thomas A. Plut, Franklin Austin, Patrick S. Finnegan, Mark H. Ballance, and Charles T. Sullivan, A DC to 10-GHz 6-b RF MEMS Time Delay Circuit, IEEE Microwave And Wireless Components Letters, 16(5)(2006).
[16] Min-Wu Kim, Yong-Ha Song, Seung-Deok Ko, Sang-Joon Ahn, Jun-Bo Yoon, Ultra-low voltage MEMS switch using a folded hinge structure Micro and Nano Systems Letters, Doi. http://www.mnsl-journal.com/content/2/1/2, (2014).
[17] Junfeng Sun, Zhiqun Li, Jian Zhu, Yuanwei Yu, Lili Jiang, Design of DC-contact RF MEMS switch with temperature stability, AIP Advances, (2015) Doi. http://dx.doi.org/10.1063/1.4905779.
[18] Xu Y, Tian Y, Zhang B, A novel RF MEMS switch on frequency reconfigurable antenna application, Microsyst Technol, 24(9)(2018) 3833–3841.
[19] Younis S, Saleem MM, Zubair M, Multiphysics design optimization of RF-MEMS switch using response surface methodology, Microelectron J, 71(2018) 47–60.
[20] Mengwei Li, Qiuhui Liu, Qiannan Wu, Yueping Han, Broadband radio frequency MEMS series contact switch with low insertion loss, Microsystem Technologies, Doi. https://doi.org/10.1007/s00542-018-4201-y, (2018).
[21] Lakshmi S, Premila Manohar, Naga Sayanu P, Optimization of structures of DC RF MEMS series switches for low actuation, Microsyst Technol, Doi.10.1007/s00542-016-3063-4, (2016).
[22] Evgeny A. Savin, Kirill A. Chadin, Roman V. Kirtaev, Design and manufacturing of X-band RF MEMS switches, Microsyst Technol, Doi. https://doi.org/10.1007/s00542-017-3629-9, (2017).
[23] Tulasi S.K., Prasad G.R.K., Siva Kumar M., Bharath Kumar Reddy A., Giridhar Y., Ajay Reddy C.V., Supriya P. (2017), Design and analysis of T-shaped mentor structure for CPW MEMS switches, Journal of Advanced Research in Dynamical and Control Systems,9(17) 1987-1994.
[24] Shameem S., Prasad G.R.K., Muzamilparvez M., Reshmi U., Harshitha G., Haritha K., Design and FEM model analysis of MEMS cantilever structure for detection of colon cancer using mass sensing, Research Journal of Pharmacy and Technology, 12(9)(2019) 4250-4254.
[25] Siddaiah N., Praveen V.V., Kavya Sri P., Ganesh Babu Y., Ganesh G.V. (2019), A low power cantilever-based metal oxide semiconductor gas sensor for greenhouse applications, International Journal of Emerging Trends in Engineering Research, 7(11)(2019) 593-598.
[26] Siddaiah N., Pujitha A., Sai G.J., Gupta U., Chaitanya C., Sensitivity enhancement and optimization of mems piezoresistive microcantilever sensor for ultra mass detection, International Journal of Innovative Technology and Exploring Engineering, 8(7)(2019) 137-142
[27] Rajasekar K., Sunithamani S., Low setting time offering series capacitive RF MEMS switch for WI-FI applications, International Journal of Recent Technology and Engineering, 7(5) 439-442
[28] Vikas K., Sunithamani S., Yagnika M., Siva Krishna S., Avanthi S. (2018), Study and analysis of novel RF MEMS switched capacitor, International Journal of Engineering and Technology(UAE),7(2) (2019) 34- 36.
[29] Sunithamani S., Sanjay Naidu R., Sudheep V., Hemanthkumar C., Analysis of MEMS-based gas sensor, Test Engineering, and Management, 81(44147)(2019) 6186-6189.
[30] Siddaiah, N.; Swamy, T. Vamsi Aravind Material Optimization of the Novel Cantilever Based RF MEMS Switch for Mobile Communication Transactions On Electrical And Electronic Materials.10.1007/s42341-019-00120-y., (2019).
[31] Jayavardhani K., Noureen Fathima S.K., Bhima Sankar K., Kavya Sri K., Sunithamani S., Design and simulation of low actuation voltage RF MEMS shunt capacitive switch with serpentine flexures & rectangular perforations, International Journal of Engineering and Technology(UAE), 7 (2)(2018) 4-8
[32] Prasad B.K.V., Prasad M.V.D., Prasad G.R.K., Sivakumar M., Sambasivaraokommu, Design and simulation of mems inertial sensor for detection of sleep apnea, International Journal of Scientific and Technology Research, 8(12)(2019) 863-865.
[33] Siddaiah N., Manjusree B., Aditya A.L.G.N., Reddy D.V.R.K. Design simulation and analysis of u-shaped and rectangular mems based triple coupled cantilevers, Journal of Scientific and Industrial Research,76(4)(2017) 235-238
[34] Ramakrishna T.V., Ganesh G.V., Saikumar B.S.D., Chandana K., Lokesh D., Siddaiah N., Electromechanical and RF performance analysis of MEMS shunt configuration switch, International Journal of Emerging Trends in Engineering Research, 7(11)(2019) 563-568.
[35] Sree Kumar Reddy D.V., Ganesh G.V., Sri Harsha M., Avinash M., Venkateswarlu R., Siddaiah N., Design and performance analysis of meanders-based RF mems shunt configuration switch, International Journal of Emerging Trends in Engineering Research, 7(11)(2019) 700-703.
[36] Rao, K. Srinivasa; Thalluri, Lakshmi Narayana; Guha, Koushik; Sravani, K. Girija., Fabrication and Characterization of Capacitive RF MEMS Perforated Switch IEEE access (2018) 77519- 77528
[37] Lakshmi Narayana T., Girija Sravani K., Srinivasa Rao K., A micro-level electrostatically actuated cantilever and metal contact-based series RF MEMS switch for multi-band applications, Cogent Engineering,4(1)(2017).
[38] Rao, KS; Naveena, P; Sravani, KG., materials Impact on the Performance Analysis and Optimization of RF MEMS Switch for 5G Reconfigurable Antenna Transactions On Electrical And Electronic Materials Aug 2019 10.1007/s42341-019-00114-w.
[39] sravani, KG; Guha, K; Rao, KS., Analysis on Selection of Beam Material for Novel Step Structured RF-MEMS Switch used for Satellite Communication Applications., Transactions On Electrical And Electronic Materials Dec 2018 10.1007/s42341-018-0068-y.
Keywords
Series switch, MEMS, actuation voltage, material science, perforation, micromechanical structures, electrostatic actuation.