Linear Rational Finite Difference Approximation for Second-Order Linear Fredholm Integro-Differential Equations Using the Half-Sweep SOR Iterative Method
How to Cite?
Ming-Ming Xu, Jumat Sulaiman, Labiyana Hanif Ali, "Linear Rational Finite Difference Approximation for Second-Order Linear Fredholm Integro-Differential Equations Using the Half-Sweep SOR Iterative Method," International Journal of Engineering Trends and Technology, vol. 69, no. 6, pp. 136-143, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I6P221
Abstract
This paper proposes the hybridization of the three-point half-sweep linear rational finite difference (3HSLRFD) schemes with the half-sweep composite trapezoidal (HSCT) approach to derive the 3HSLRFD-HSCT discretization schemes, in which these discretization schemes are used to derive the corresponding approximation equation for second-order linear Fredholm integro-differential equation. Based on the approximation equation, the related linear system can be generated, in which its coefficient matrix is dense. Furthermore, the half-sweep Successive Over-Relaxation (HSSOR) technique is implemented to find the numerical solution of the linear system. To make a comparison, the full-sweep Gauss-Seidel (FSGS) and the full-sweep Successive Over-Relaxation (FSSOR) techniques are also presented as the control method. In numerical experiments, three parameters like the quantity of iterations, elapsed time and the maximum absolute errors have been recorded via three methods. Lastly, it can be pointed out that the HSSOR technique is more superior to the other two techniques, especially in terms of the quantity of iterations and elapsed time.
Keywords
Second-order Integro-differential equations, Half-sweep SOR iterative method, Three-point half-sweep linear rational finite difference scheme, Half-sweep composite trapezoidal scheme.
Reference
[1] V. Lakshmikantham and M. R. M. Rao, Theory of integro-differential equations, 1nd ed., USA : Gordon and Breach Science. (1995).
[2] S. M. Zemyan, The classical theory of integral equations. USA : Birkhauser. (2012).
[3] M. E. Durmaz, and G. M. Amiraliyev, A robust numerical method for a singularly perturbed fredholm integro-differential equation, Mediterranean Journal of Mathematics. 18(1) (2021) 1-17.
[4] N. Rohaninasab, K. Maleknejad and R. Ezzati, Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method, Applied Mathematics and Computation. 328 (2018) 171-188.
[5] E. Hesameddini, M. Shahbazi, Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method, Applied Numerical Mathematics. 136 (2019) 122-138.
[6] E. D. Khiabani, B. Shiri, H. Ghaffarzadeh and D. Baleanu, Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods, Journal of Applied Mathematics and Computing. 63(1) (2019) 1-29.
[7] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad and K. Pakhtunkhwa, On analysis of the fuzzy fractional order volterra-fredholm integro-differential equation, Alexandria Engineering Journal. 60(1) (2021) 1827-1838.
[8] J. P. Berrut, M. S. Floater and G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Applied Numerical Mathematics. 61(9) (2011) 989–1000.
[9] G. Klein and J. P. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal. 50(2) (2012) 643-656.
[10] A. Abdi, S. A. Hosseini, The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations, SIAM J. Sci. Comput.. 40(3) (2018) ) A1936–A1960.
[11] A. Abdi, J. P. Berrut and S. A. Hosseini, The linear barycentric rational method for a class of delay Volterra integro-differential equations, J. Sci. Comput.. 75(3) (2018) 1757–1775.
[12] A. Abdi, S. A. Hosseini and H. Podhaisky, Adaptive linear barycentric rational finite differences method for stiff ODEs, Journal of Computational and Applied Mathematics. 357(0377-0427) (2019) 204–214.
[13] A. R. Abdullah, The Four Point Explicit Decoupled Group (EDG) Method: A Fast Poisson Solver, International Journal of Computer Mathematics. 38(1-2) (1991) 61–70.
[14] A. A. Dahalan, M. S. Muthuvalu and J. Sulaiman, Numerical Solutions of Two-Point Fuzzy Boundary Value Problem Using Half-Sweep Alternating Group Explicit Method, AIP Conference Proceedings, 1557 (2013) 103-107.
[15] A. A. Dahalan, J. Sulaiman and M. S. Muthuvalu, Performance of HSAGE method with Seikkala derivative for 2-D Fuzzy Poisson equation, Applied Mathematical Sciences. 8(17-20) (2014) 885-899.
[16] A. A. Dahalan, M. S. Muthuvalu and J. Sulaiman, Numerical Solutions of Two-Point Fuzzy Boundary Value Problem Using Half-Sweep Alternating Group Explicit Method, AIP Conference Proceedings, 1557 (2013) 103-107.
[17] A. A. Dahalan and J. Sulaiman, Approximate solution for 2 dimensional Fuzzy Parabolic equations in QSAGE iterative method. International Journal of Mathematical Analysis, 9(35) (2015) 1733-1746.
[18] A. Saudi, J. Sulaiman, Path planning simulation using harmonic potential fields through four point-EDGSOR method via 9-point Laplacian, Jurnal Teknologi. 78(8-2) (2016) 12–24.
[19] A. Saudi, J. Sulaiman, Red-Black Strategy for Mobile Robot Path Planning, Lecture Notes in Engineering and Computer Science. 2182(1) (2010) 2215-2220.
[20] J. Sulaiman, M. K. Hasan, M. Othman and S. A. A. Karimd, MEGSOR iterative method for the triangle element solution of 2D Poisson equations, Procedia Computer Science. 1(1) (2010) 377-385.
[21] M. K. Hasan, M. Othman, Z. Abbas, J. Sulaiman, and R. Johari, The HSLO(3)-FDTD With Direct-Domain and Temporary-Domain Approaches On Infinite Space Wave Propagation, Proceedings of the 7th IEEE Malaysia International Conference on Communications and the 13th IEEE International Conference on Networks (MICC-ICON 2005), (2005) 1002-1007.
[22] M. S. Floater, and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik. 107(2) (2007) 315-331.
[23] M. S. Muthuvalu and J. Sulaiman, Quarter-Sweep Arithmetic Mean (QSAM) iterative method for second kind linear Fredholm integral equations, Appl. Math. Sci. 4 (2010) 2943-2953.
[24] M. S. Muthuvalu and J. Sulaiman, The Arithmetic Mean iterative methods for solving dense linear systems arise from first kind linear Fredholm integral equations, Proceedings of the Romanian Academy, Series A, of the Romanian Academy. (2012) 1-3.
[25] M. S. Muthuvalu and J. Sulaiman, The Quarter-Sweep Geometric Mean method for solving second kind linear Fredholm integral equations, Bull. Malays. Math. Sci. Soc., 36 (2013) 1009-1026.
[26] M. S. Muthuvalu and J. Sulaiman, Half-sweep geometric mean iterative method for the repeated Simpson solution of second kind linear Fredholm integral equations, Proyecciones (Antofagasta). 31(1) (2012) 65-79.
[27] L. H. Ali, J. Sulaiman, A. Saudi and M. M. Xu, Newton-SOR with Quadrature Scheme for Solving Nonlinear Fredholm Integral Equations, Lecture Notes in Electrical Engineering. 724 (2021) : 325-337.
[28] M. M. Xu, J. Sulaiman and L. H. Ali, Rational Finite Difference Solution of First-Order Fredholm Integro-differential Equations via SOR Iteration, Lecture Notes in Electrical Engineering. 724 (2021) 463-474.
[29] O. A. Gegele, O. P. Evans and D. Akoh, Numerical solution of higher order linear Fredholm Integro-differential equations, American Journal of Engineering Research. 3(8) (2014) 243-247.
[30] A. M. Wazwaz, A first course in integral equations, 2ed., USA : World Scientific. (2015).