A Survey of Machine Learning Methods to Detect COVID-19 Severity, Mortality, and Vaccines Efficacy

A Survey of Machine Learning Methods to Detect COVID-19 Severity, Mortality, and Vaccines Efficacy

© 2022 by IJETT Journal
Volume-70 Issue-11
Year of Publication : 2022
Author : Abdullah M. Baqasah
DOI : 10.14445/22315381/IJETT-V70I11P204

How to Cite?

Abdullah M. Baqasah, "A Survey of Machine Learning Methods to Detect COVID-19 Severity, Mortality, and Vaccines Efficacy," International Journal of Engineering Trends and Technology, vol. 70, no. 11, pp. 28-46, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I11P204

In this paper, we tackle the problem of COVID-19 detection. We present a survey on machine learning (ML) and deep learning (DL) methods to predict different vaccines' severity, mortality, and efficacy. For severity, we study the spread of Alpha, Beta, Delta, and Gamma in the countries where the variant first appears, such as the United Kingdom, South Africa, India, and Brazil. For mortality, we present works that study the rate of mortality caused by each variant. Finally, we present an overview of methods that respond to the question: do the five vaccines—produced by—Moderna, Pfizer, Novavax, Johnson & Johnson, and Astra Zeneca slow down the progress of COVID-19 variants?

Coronavirus, Covid-19, Machine learning, Deep learning, Vaccine efficacy, Mortality, Severity.

[1] COVID-19 Coronavirus Pandemic, 2022. [Online] Available: https://www.worldometers.info/coronavirus/
[2] World Health Organization, 2022. [Online] Available: https://www.who.int/
[3] B. G. Marin, G. Aghagoli, K. Lavine, L. Yang, E. J. Siff, S. S. Chiang, T. P. Salazar-Mather, L. Dumenco, M. C. Savaria, S. N. Aung, T. Flanigan, and I. C. Michelow, "Predictors of COVID-19 Severity: A Literature Review," Reviews in Medical Virology, vol. 31, no. 1, pp. 1-10, 2021. Crossref, http://doi.org/10.1002/rmv.2146
[4] M. T. Huyut, Z. Huyut, F. İlkbahar, and C. Mertoğlu, "What is the Impact and Efficacy of Routine Immunological, Biochemical and Hematological Biomarkers as Predictors Of COVID-19 Mortality?," International Immunopharmacology, vol. 105, 2022. Crossref, http://doi.org/10.1016/j.intimp.2022.108542
[5] R. Chen, L. Sang, M. Jiang, Z. Yang, N. Jia, W. Fu, J. Xie, W. Guan, W. Liang, Z. Ni, Y. Hu, L. Liu, H. Shan, C. Lei, Y. Peng, L. Wei, Y. Liu, Y. Hu, P. Peng, J. Wang, J. Liu, Z. Chen, G. Li, Z. Zheng, S. Qiu, J. Luo, C. Ye, S. Zhu, J. Zheng, N. Zhang, Y. Li, J. He, J. Li, S. Li, and N. Zhong, "Longitudinal Hematologic and Immunologic Variations Associated with the Progression of COVID-19 Patients in China," Journal of Allergy and Clinical Immunology, vol. 146, no. 1, pp. 89-100, 2020. Crossref, http://doi.org/10.1016/j.jaci.2020.05.003
[6] R. Vaishya, M. Javaid, I.H. Khan, and A. Haleem, "Artificial Intelligence (A.I.) Applications for COVID-19 Pandemic," Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 14, no. 4, pp. 337-339, 2020. Crossref, https://doi.org/10.1016/j.dsx.2020.04.012
[7] E. Christodoulou, A. Gregoriades, M. Pampaka, and H. Herodotou, "Combination of Topic Modeling and Decision Tree Classification for Tourist Destination Marketing," In International Conference on Advanced Information Systems Engineering, Springer, Cham, pp. 95-108, 2020. Crossref, https://doi.org/10.1007/978-3-030-49165-9_9
[8] W. Xu, N. N. Sun, H. N. Gao, Z. Y. Chen, Y. Yang, B. Ju, and L. L. Tang, "Risk Factors Analysis of COVID-19 Patients with ARDS and Prediction Based on Machine Learning," Scientific Reports, vol. 11, no. 2933, pp. 1-12, 2021. Crossref, https://doi.org/10.1038/s41598-021-82492-x
[9] J.R. Quinlan, “Induction of Decision Trees," Machine Learning, vol. 1, no. 1, pp. 81-106, 1986. Crossref, https://doi.org/10.1007/BF00116251
[10] J.R. Quinlan, "C4.5: Programs for Machine Learning," Elsevier, 2014. Crossref, https://doi.org/10.1007/BF00993309
[11] C5.0: An Informal Tutorial, 2019. [Online]. Available: https://www.rulequest.com/see5-unix.html
[12] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer Science & Business Media, 1999.
[13] M. Pourhomayoun, and M. Shakibi, "Predicting Mortality Risk in Patients with COVID-19 Using Machine Learning to Help Medical Decision-Making," Smart Health, vol. 20, no. 100190, 2021. Crossref, https://doi.org/10.1016/j.smhl.2020.100178
[14] M. S. Farooq, A. Arooj, R. Alroobaea, A. M. Baqasah, M. Y. Jabarulla, D. Singh, and R. Sardar, "Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques," Sensors, vol. 22, no. 5, 2022. Crossref, https://doi.org/10.3390/s22051803
[15] “Entity Extraction Using Deep Learning Based on Guillaume Genthial Work on NER,” 2018. [Online] Available: https://medium.com/p/8014acac6bb8
[16] An Overview of ResNet and its Variants, 2017. [Online] Available: https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
[17] COVID-19: Severity of the Delta (B.1.617.2) Variant in Children, 2021. [Online]. Available: https://www.publichealthontario.ca/-/media/documents/ncov/voc/2021/09/covid-19-severity-delta-children.pdf?la=en
[18] E. Fayyoumi, S. Idwan, and H. AboShindi, "Machine Learning and Statistical Modeling for Prediction of Novel COVID-19 Patients Case Study: Jordan," International Journal of Advanced Computer Science and Applications, vol. 11, no. 5, 2020. Crossref, https://doi.org/10.14569/IJACSA.2020.0110518
[19] J. Kang, T. Chen, H. Luo, Y. Luo, G. Du, and M. Jiming-Yang, "Machine Learning Predictive Model for Severe COVID-19," Infection, Genetics and Evolution, vol. 90, 2021. Crossref, https://doi.org/10.1016/j.meegid.2021.104737
[20] V. Schöning, E. Liakoni, C. Baumgartner, A. K. Exadaktylos, W. E. Hautz, A. Atkinson, and F. Hammann, "Development and Validation of a Prognostic COVID-19 Severity Assessment (COSA) Score and Machine Learning Models for Patient Triage at a Tertiary Hospital," Journal of Translational Medicine, vol. 19, no. 1, pp. 1-11, 2021. Crossref, https://doi.org/10.1186/s12967-021-02720-w
[21] L. Sun, F. Song, N. Shi, F. Liu, S. Li, P. Li, W. Zhang, X. Jiang, Y. Zhang, L. Sun, X. Chen, and Y. Shi, "Combination of Four Clinical Indicators Predicts the Severe/Critical Symptom of Patients Infected COVID-19," Journal of Clinical Virology, vol. 128, 2020. Crossref, https://doi.org/10.1016/j.jcv.2020.104431
[22] H. Sun, A. Jain, M. J. Leone, H. S. Alabsi, L. N. Brenner, E. Ye, W. Ge, Y. Shao, C. L. Boutros, R. Wang, R. A. Tesh, C. Magdamo, S. I. Collens, W. Ganglberger, I. V. Bassett, J. B. Meigs, J. Kalpathy-Cramer, M. D. Li, J. T. Chu, M. L. Dougan, L. W. Stratton, J. Rosand, B. Fischl, S. Das, S. S. Mukerji, G. K. Robbins, and M. B. Westover, "CoVA: An Acuity Score for Outpatient Screening that Predicts Coronavirus Disease 2019 Prognosis," The Journal of Infectious Diseases, vol. 223, no. 1, pp. 38-46, 2021. Crossref, https://doi.org/10.1093/infdis/jiaa663
[23] Z. Chen, N. W. Russo, M. M. Miller, R. X. Murphy, and D. B. Burmeister, "An Observational Study to Develop a Scoring System and Model to Detect Risk of Hospital Admission Due to COVID-19," Journal of the American College of Emergency Physicians Open, vol. 2, no. 2, 2021. Crossref, https://doi.org/10.1002/emp2.12406
[24] B. Hao, S. Sotudian, T. Wang, T. Xu, Y. Hu, A. Gaitanidis, K. Breen, G. C. Velmahos, and I. C. Paschalidis, "Early Prediction of Level-of-Care Requirements in Patients with COVID-19," Elife, vol. 9, 2020. Crossref, https://doi.org/10.7554/eLife.60519
[25] H. Ghandorh, M. Z. Khan, R. Alsufyani, and M. Khan, "An ICU Admission Predictive Model for COVID-19 Patients in Saudi Arabia," International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, 2021. Crossref, https://doi.org/10.14569/IJACSA.2021.0120764
[26] R. Sanjay, S. G. Rajan, C. Supraja, H. Veena, M. Natesh, and N. L. Vidya, "A Survey on Prevention from Emerging Viruses," International Journal of Computer Trends and Technology, vol. 69, no. 4, pp. 54-62, 2021. Crossref, https://doi.org/10.14445/22312803/IJCTT-V69I4P110
[27] T. Karim, R. Nihal, B. Sanaa, E. B. Abderrahmane, E. A. Ayoub, Z. Omar, and F. Abdelmajid, "CNN Applied in Public Transport for the Protection Against the COVID-19 Spread," International Journal of Engineering Trends and Technology, vol. 69, no. 10, pp. 33-37, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I10P205
[28] Facial Expression Recognition (FER) Challenge, 2013. [Online]. Available: https://www.kaggle.com/datasets/ashishpatel26/facial-expression-recognitionferchallenge
[29] A. S. Yadaw, Y. Li, S. Bose, R. Iyengar, S. Bunyavanich, and G. Pandey, "Clinical Features of COVID-19 Mortality: Development and Validation of a Clinical Prediction Model," The Lancet Digital Health, vol. 2, no. 10, pp. E516-E525, 2020. Crossref, https://doi.org/10.1016/S2589-7500(20)30217-X
[30] S. Alle, A. Kanakan, S. Siddiqui, A. Garg, A. Karthikeyan, P. Mehta, N. Mishra, P. Chattopadhyay, P. Devi, S. Waghdhare, A. Tyagi, B. Tarai, P. P. Hazarik, P. Das, S. Budhiraja, V. Nangia, A. Dewan, R. Sethuraman, C. Subramanian, M. Srivastava, A. Chakravarthi, J. Jacob, M. Namagiri, V. Konala, D. Dash, T. Sethi, S. Jha, A. Agrawal, R. Pandey, P. K. Vinod, and U. D. Priyakumar, "COVID-19 Risk Stratification and Mortality Prediction in Hospitalized Indian Patients: Harnessing Clinical Data for Public Health Benefits," PLoSOne, vol. 17, no. 3, 2022. Crossref, https://doi.org/10.1371/journal.pone.0264785
[31] L. Yan, H. T. Zhang, J. Goncalves, Y. Xiao, M. Wang, Y. Guo, C. Sun, X. Tang, L. Jing, M. Zhang, X. Huang, Y. Xiao, H. Cao, Y. Chen, T. Ren, F. Wang, Y. Xiao, S. Huang, X. Tan, N. Huang, B. Jiao, C. Cheng, Y. Zhang, A. Luo, L. Mombaerts, J. Jin, Z. Cao, S. Li, H. Xu, and Y. Yuan, "An Interpretable Mortality Prediction Model for COVID-19 Patients," Nature Machine Intelligence, vol. 2, no. 5, pp. 283-288, 2020. Crossref, https://doi.org/10.1038/s42256-020-0180-7
[32] E. Ortega-Espinoza, M. Flores-Cruz, D. C. Loayza, J. Velarde-Cuadros, A. Delgado, and E.L. Huamaní, "," International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 48-53, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I3P206
[33] M. Masud, M. D. Alshehri, R. Alroobaea, and M. Shorfuzzaman, "Leveraging Convolutional Neural Network for COVID-19 Disease Detection Using C.T. Scan Images," Intelligent Automation and Soft Computing, vol. 29, no. 1, pp. 1-13, 2021. Crossref, https://doi.org/10.32604/iasc.2021.016800
[34] W. Alawad, B. Alburaidi, A. Alzahrani, and F. Alflaj, "A Comparative Study of Stand-Alone and Hybrid CNN Models for COVID-19 Detection," International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021. Crossref, https://doi.org/10.14569/IJACSA.2021.01206102
[35] N. G. Davies, C. I. Jarvis, W. J. Edmunds, N. P. Jewell, K. Diaz-Ordaz, and R. H. Keogh, "Increased Mortality in Community-Tested Cases of SARS-Cov-2 Lineage B.1.1.7," Nature, vol. 593, no. 7858, pp. 270-274, 2021. Crossref, https://doi.org/10.1038/s41586-021-03426-1
[36] S. M. Treibert, "The Severe Acute Respiratory Syndrome Corona Virus Type 2," In Mathematical Modeling and Nonstandard Schemes for the Corona Virus Pandemic, Best Masters. Springer Spektrum, Wiesbaden, pp. 9-63, 2021. Crossref, https://doi.org/10.1007/978-3-658-35932-4_2
[37] E. Cornelius, O. Akman, and D. Hrozencik, "COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm Under Varying Patient Frailty," Mathematics, vol. 9, no. 17, 2021. Crossref, https://doi.org/10.3390/math9172043
[38] COVID-19 Case Surveillance Public Use Data website, 2022. [Online]. Available: https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
[39] A. F. Aljouie, A. Almazroa, Y. Bokhari, M. Alawad, E. Mahmoud, E. Alawad, A. Alsehawi, M. Rashid, L. Alomair, S. Almozaai, B. Albesher, H. Alomaish, R. Daghistani, N. K. Alharbi, M. Alaamery, M. Bosaeed, and H. Alshaalan, "Early Prediction of COVID-19 Ventilation Requirement and Mortality from Routinely Collected Baseline Chest Radiographs, Laboratory, and Clinical Data with Machine Learning," Journal of Multidisciplinary Healthcare, vol. 14, pp. 2017-2033, 2021. Crossref, https://doi.org/10.2147/JMDH.S322431
[40] W. Liang, H. Liang, L. Ou, B. Chen, A. Chen, C. Li, Y. Li, W. Guan, L. Sang, J. Lu, Y. Xu, G. Chen, H. Guo, J. Guo, Z. Chen, Y. Zhao, S. Li, N. Zhang, N. Zhong, and J. He, "Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients with COVID-19," JAMA Internal Medicine, vol. 180, no. 8, pp. 1081-1089, 2020. Crossref, https://doi.org/10.1001/jamainternmed.2020.2033
[41] P. Gemmar, "An Interpretable Mortality Prediction Model for COVID-19 Patients–Alternative Approach," MedRxiv, Cold Spring Harbor Laboratory Press, 2020. Crossref, https://doi.org/10.1101/2020.06.14.20130732
[42] M. E. H. Chowdhury, T. Rahman, A. Khandakar, S. Al-Madeed, S. M. Zughaier, S. A. R. Doi, H. Hassen, and M. T. Islam, "An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning," Cognitive Computation, pp. 1-16, 2021. Crossref, https://doi.org/10.1007/s12559-020-09812-7
[43] S. Bolourani, M. Brenner, P. Wang, T. McGinn, J. S. Hirsch, D. Barnaby, T. P. Zanos, and Northwell, “COVID-19 Research Consortium a Machine Learning Prediction Model of Respiratory Failure within 48 Hours of Patient Admission for COVID-19: Model Development and Validation," Journal of Medical Internet Research,vol. 23, no. 2, 2021. Crossref, https://doi.org/10.2196/24246
[44] E. Jimenez-Solem, T. S. Petersen, C. Hansen, C. Hansen, C. Lioma, C. Igel, W. Boomsma, O. Krause, S. Lorenzen, R. Selvan, J. Petersen, M. E. Nyeland, M. Z. Ankarfeldt, G. M. Virenfeldt, M. Winther-Jensen, A. Linneberg, M. M. Ghazi, N. Detlefsen, A. D. Lauritzen, A. G. Smith, M. D. Bruijne, B. Ibragimov, J. Petersen, M. Lillholm, J. Middleton, S. H. Mogensen, H. C. Thorsen-Meyer, A. Perner, M. Helleberg, B. S. Kaas-Hansen, M. Bonde, A. Bonde, A. Pai, M. Nielsen, and M. Sillesen, "Developing and Validating COVID-19 Adverse Outcome Risk Prediction Models from a Bi-National European Cohort of 5594 Patients," Scientific Reports, vol. 11, no. 1, pp. 1-12, 2021. Crossref, https://doi.org/10.1038/s41598-021-81844-x
[45] K. Ikemura, E. Bellin, Y. Yagi, H. Billett, M. Saada, K. Simone, L. Stahl, J. Szymanski, D. Y. Goldstein, and M. R. Gil, "Using Automated-Machine Learning to Predict COVID-19 Patient Survival: Identify Influential Biomarkers," Journal of Medical Internet Research, vol. 23, no. 2, 2021. Crossref, https://doi.org/10.2196/23458
[46] D. Ji, D. Zhang, J. Xu, Z. Chen, T. Yang, P. Zhao, G. Chen, G. Cheng, Y. Wang, J. Bi, L. Tan, G. Lau, and E. Qin, "Prediction for Progression Risk in Patients with COVID-19 Pneumonia: The CALL Score," Clinical Infectious Diseases, vol. 71, no. 6, pp. 1393-1399, 2020. Crossref, https://doi.org/10.1093/cid/ciaa414
[47] A. Karthikeyan, A. Garg, P. K. Vinod, and U. D. Priyakumar, "Machine Learning Based Clinical Decision Support System for Early COVID-19 Mortality Prediction," Frontiers in Public Health, vol. 9, 2021. Crossref, https://doi.org/10.3389/fpubh.2021.626697
[48] K. Wang, P. Zuo, Y. Liu, M. Zhang, X. Zhao, S. Xie, H. Zhang, X. Chen, and C. Liu, "Clinical and Laboratory Predictors of In-Hospital Mortality in Patients with Coronavirus Disease-2019: A cohort study in Wuhan, China," Clinical Infectious Diseases, vol. 71, no. 16, pp. 2079-2088, 2020. Crossref, https://doi.org/10.1093/cid/ciaa538
[49] SOM Toolbox 2.0, 2015. [Online]. Available: http://www.cis.hut.fi/somtoolbox
[50] A. Rottenstreich, G. Zarbiv, E. Oiknine-Djian, R. Zigron, D. G. Wolf, and S. Porat, "Efficient Maternofetal Transplacental Transfer of Anti-SARS-Cov-2 Spike Antibodies After Antenatal SARS-Cov-2 BNT162b2 mRNA Vaccination," Clinical Infectious Diseases, vol. 73, no. 10, pp. 1909-1912, 2021. Crossref, https://doi.org/10.1093/cid/ciab266
[51] A. Sittar, D. Major, C. Mello, D. Mladenić, and M. Grobelnik, "Political and Economic Patterns in COVID-19 News: From Lockdown to Vaccination," IEEE Access, vol. 10, pp. 40036-40050, 2022. Crossref, https://doi.org/10.1109/ACCESS.2022.3164692
[52] Arshiya Moin, "Artificial Intelligence vs Covid19," SSRG International Journal of Computer Science and Engineering, vol. 7, no. 5, pp. 5-7, 2020. Crossref, https://doi.org/10.14445/23488387/IJCSE-V7I5P102
[53] A. Pormohammad, M. Zarei, S. Ghorbani, M. Mohammadi, M. H. Razizadeh, D. L. Turner, and R. J. Turner, "Efficacy and Safety of COVID-19 Vaccines: Asystematic Review and Meta-Analysis of Randomized Clinical Trials," Vaccines, vol. 9, no. 5, 2021. Crossref, https://doi.org/10.3390/vaccines9050467
[54] National Institutes of Health Website, 2022. [Online]. Available: https://www.nia.nih.gov/health/placebos-clinical-trials
[55] C. Cai, Y. Peng, E. Shen, Q. Huang, Y. Chen, P. Liu, C. Guo, Z. Feng, L. Gao, X. Zhang, Y. Gao, Y. Liu, Y. Han, S. Zeng, and H. Shen, "A Comprehensive Analysis of the Efficacy and Safety of COVID-19 Vaccines," Molecular Therapy, vol. 29, no. 9, pp. 2794-2805, 2021. Crossref, https://doi.org/10.1016/j.ymthe.2021.08.001
[56] G. Liu, B. Carter, T. Bricken, S. Jain, M. Viard, M. Carrington, and D. K. Gifford, "Computationally Optimized SARS-Cov-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions," Cell Systems, vol. 11, no. 2, pp. 131-144, 2020. Crossref, https://doi.org/10.1016/j.cels.2020.06.009
[57] H. Chemaitelly, H. M. Yassine, F. M. Benslimane, H. A. AlKhatib, P. Tang, M. R. Hasan, J. A. Malek, P. Coyle, H. H. Ayoub, Z. AlKanaani, E. AlKuwari, A. Jeremijenko, A. H. Kaleeckal, A. N. Latif, R. M. Shaik, H. F. AbdulRahim, G. K. Nasrallah, M. G. AlKuwari, H. E. AlRomaihi, M. H. Al-Thani, A. AlKhal, A. A. Butt, R. Bertollini, and L. J. Abu-Raddad, "mRNA-1273 COVID-19 Vaccine Effectiveness Against the B.1.1.7 and B.1.351 Variants and Severe COVID-19 Disease in Qatar," Nature Medicine, vol. 27, pp. 1614-1621, 2021. Crossref, https://doi.org/10.1038/s41591-021-01446-y
[58] J. Chapin-Bardales, J. Gee, T. Myers, "Reactogenicity following Receipt of mRNA-Based COVID-19 Vaccines," JAMA, vol. 325, no. 21, pp. 2201-2202, 2021. Crossref, https://doi.org/10.1001/jama.2021.5374
[59] J. Held, J. Esse, K. Tascilar, P. Steininger, K. Schober, P. Irrgang, R. Alsalameh, M. Tenbusch, C. Seggewies, and C. Bogdan, "Reactogenicity Correlates Only Weakly with Humoral Immunogenicity After COVID-19 Vaccination with BNT162b2 mRNA (Comirnaty®)," Vaccines, vol. 9, no. 10, 2021. Crossref, https://doi.org/10.3390/vaccines9101063
[60] M. V. Tilbeurgh, K. Lemdani, A.S. Beignon, C. Chapon, N. Tchitchek, L. Cheraitia, E. M. Lopez, Q. Pascal, R. L. Grand, P. Maisonnasse, and C. Manet, "Predictive Markers of Immunogenicity and Efficacy for Human Vaccines," Vaccines, vol. 9, no. 6, 2021. Crossref, https://doi.org/10.3390/vaccines9060579
[61] W. Burny, A. Callegaro, V. Bechtold, F. Clement, S. Delhaye, L. Fissette, M. Janssens, G. Leroux-Roels, A. Marchant, R. A. van den Berg, N. Garçon, R. van der Most, and A. M. Didierlaurent, "Different Adjutants Induce Common Innate Pathways That are Associated with Enhanced Adaptive Responses Against a Model Antigen in Humans," Frontiers in Immunology, vol. 8, 2017. Crossref, https://doi.org/10.3389/fimmu.2017.00943
[62] Y. H. Hwang, K. H. Song, Y. Choi, S. Go, S. J. Choi, J. Jung, C. K. Kang, P. G. Choe, N. J. Kim, W. B. Park, and M. D. Oh, "Can Reactogenicity Predict Immunogenicity After COVID-19 Vaccination?," The Korean Journal of Internal Medicine, vol. 36, no. 6, 2021. Crossref, https://doi.org/10.3904/kjim.2021.210
[63] C. Réda, E. Kaufmann, A. Delahaye-Duriez, "Machine Learning Applications in Drug Development," Computational and Structural Biotechnology Journal, vol. 18, pp. 241-252, 2020. Crossref, https://doi.org/10.1016/j.csbj.2019.12.006
[64] B. A. Abbasi, D. Saraf, T. Sharma, R. Sinha, S. Singh, P. Gupta, S. Sood, A. Gupta, and K. Rawal, "Identification of Vaccine Targets & Design of Vaccine Against SARS-Cov-2 Coronavirus using Computational and Deep Learning-Based Approaches," Bioinformatics and Genomics, 2020. Crossref, https://doi.org/10.7717/peerj.13380
[65] Z. Yazdani, A. Rafiei, M. Yazdani, and R. Valadan, "Design an Efficient Multi-Epitope Peptide Vaccine Candidate against SARS-CoV-2: An in Silico Analysis," Infection and Drug Resistance, vol. 13, 2020. Crossref, https://doi.org/10.2147/IDR.S264573
[66] The Immune Epitope Database (IEDB), 2022. [Online]. Available: http://www.iedb.org
[67] Rankpep: Prediction of Binding Peptides to Class I and Class II MHC Molecules, 2022. [Online] Available: http://imed.med.ucm.es/Tools/rankpep.html
[68] Coronavirus (COVID-19) Vaccinations, 2022. [Online]. Available: https://ourworldindata.org/covid-vaccinations?country=OWID_WRL
[69] Y. Omae, M. Sasaki, J. Toyotani, K. Hara, and H. Takahashi, "Theoretical Analysis of the SIRVVD Model for Insights Into the Target Rate of COVID-19/SARS-Cov-2 Vaccination in Japan," IEEE Access, vol. 10, pp. 43044-43054, 2022. Crossref, https://doi.org/10.1109/ACCESS.2022.3168985