Optical and Electrochromic Properties of CeO2/WO3 Hybrid Thin Films Prepared by Hydrothermal and Sputtering

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2022 by IJETT Journal
Volume-70 Issue-5
Year of Publication : 2022
Authors : Ashok Reddy G V, K Naveen Kumar, Habibuddin Shaik, R Imran Jafri, Ramachandra Naik, Doreswamy B H
DOI :  10.14445/22315381/IJETT-V70I5P201

Citation 

MLA Style: Ashok Reddy, G V et al. "Optical and Electrochromic Properties of CeO2/WO3 Hybrid Thin Films Prepared by Hydrothermal and Sputtering." International Journal of Engineering Trends and Technology, vol. 70, no. 5, May. 2022, pp. 1-8. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I5P201

APA Style:Ashok Reddy, G V., Naveen Kumar, K., Habibuddin Shaik, Imran Jafri, R., Ramachandra Naik, Doreswamy, B H. (2022). Optical and Electrochromic Properties of CeO2/WO3 Hybrid Thin Films Prepared by Hydrothermal and Sputtering. International Journal of Engineering Trends and Technology, 70(5), 1-8. https://doi.org/10.14445/22315381/IJETT-V70I5P201

Abstract
Innovative chromogenic nanostructures like hybrids but also composite materials can be increased electrochromic efficiency because of their prospective application values in low-power displays, smart windows, electronic papers, and car anti-reflect mirrors. We used a hydrothermal approach to make Cerium oxide Nanorods have various ratios in this report. DC magnetron sputtering procedures cover the generated cerium oxide nanorods of various diameters with a tungsten oxide layer in one step. the surface plasmon effect varies depending on the size of Ce Nanorods, and this phenomenon impacts electrochromic results. the electrochromic performances of CeO2/WO3 nanorods on FTO-coated glass slides are examined using a 0.5 M solution of H2SO4 as the electrolyte in the visible range. These structures produce considerable optical modulation (47 %, 45 %, and 41 % at 700 nm) and coloration efficiency (11.6, 7.57, and 10.84 cm2C-1 at 700 nm).

Keywords
Smart window, Nanocomposite, Cerium oxide nanorods, Thin film, Electrochromic.

Reference
[1] M. Kamalisarvestani, R. Saidur, S. Mekhilef, and F. S. Javadi, Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows, Renew. Sustain. Energy Rev., 26 (2013) 353–364. Doi: 10.1016/J.Rser.2013.05.038.
[2] J. Xu, S. Shi, X. Zhang, Y. Wang, M. Zhu, and L. Li, Structural and Optical Properties of (Al, K)-Co-Doped Zno Thin Films Deposited By A Sol-Gel Technique, Mater. Sci. Semicond. Process., 16(3) (2013) 732–737. Doi: 10.1016/J.Mssp.2012.12.016.
[3] C. F. Azevedo Et Al., New Thin Films of Nio Doped With V2o5 For Electrochromic Applications, J. Phys. Chem. Solids, 110 (2017) 30–35. Doi: 10.1016/J.Jpcs.2017.05.021.
[4] J. Gutpa, H. Shaik, K. Naveen Kumar, and S. A. Sattar, Pvd Techniques Proffering Avenues for Fabrication of Porous Tungsten Oxide (Wo3) Thin Films: A Review, Mater. Sci. Semicond. Process., 143 (2022) 106534. Doi: 10.1016/J.Mssp.2022.106534.
[5] S. Adhikari Et Al., Electrochemical Protonation/De-Protonation of Titania Nanotubes Decorated with Silver Phosphate Crystals: an Enhanced Electrochromic Color Contrast, Opt. Mater. (Amst)., 40 (2015) 112–117. Doi: 10.1016/J.Optmat.2014.12.004.
[6] D. Chatzikyriakou, A. Maho, R. Cloots, and C. Henrist, Ultrasonic Spray Pyrolysis As A Processing Route For Templated Electrochromic Tungsten Oxide Films, Microporous Mesoporous Mater., 240 (2017) 31–38. Doi: 10.1016/J.Micromeso.2016.11.001.
[7] K. Sauvet, L. Sauques, and A. Rougier, Electrochromic Properties of Wo3 As A Single Layer and in A Full Device: From the Visible To the Infrared, J. Phys. Chem. Solids, 71(4) (2010) 696–699. Doi: 10.1016/J.Jpcs.2009.12.069.
[8] E. Eren, C. Alver, G. Yurdabak Karaca, E. Uygun, and A. Uygun Oksuz, Enhanced Electrochromic Performance of Wo3 Hybrids using Polymer Plasma Hybridization Process, Synth. Met., 235(2017) (2018) 115–124. Doi: 10.1016/J.Synthmet.2017.12.003.
[9] Y. Yin, C. Lan, S. Hu, and C. Li, Effect of Gd-Doping on Electrochromic Properties of Sputter Deposited Wo3 Films, J. Alloys Compd., 739 (2018) 623–631. Doi: 10.1016/J.Jallcom.2017.12.290.
[10] K. J. Patel, G. G. Bhatt, J. R. Ray, P. Suryavanshi, and C. J. Panchal, All-Inorganic Solid-State Electrochromic Devices: A Review, J. Solid State Electrochem., 21(2) (2017) 337–347. Doi: 10.1007/S10008-016-3408-Z.
[11] C. J. Tang, J. M. Ye, Y. T. Yang, and J. L. He, Large-Area Flexible Monolithic Ito/Wo3/Nb2o5/Nivo?/Ito Electrochromic Devices Prepared By using Magnetron Sputter Deposition, Opt. Mater. (Amst)., 55 (2016) 83–89. Doi: 10.1016/J.Optmat.2016.03.021.
[12] I. Kostis Et Al., Highly Porous Tungsten Oxides For Electrochromic Applications, Microelectron. Eng., 111 (2013) 149–153. Doi: 10.1016/J.Mee.2013.03.039.
[13] C. R. Dhas, R. Venkatesh, R. Sivakumar, A. M. E. Raj, and C. Sanjeeviraja, Effect of Solution Molarity on Optical Dispersion Energy Parameters and Electrochromic Performance of Co3o4 Films, Opt. Mater. (Amst)., 72 (2017) 717–729. Doi: 10.1016/J.Optmat.2017.07.026.
[14] D. Dong Et Al., Electrochromic Properties of Nio X?:H Films Deposited By Dc Magnetron Sputtering For Ito/Nio X?:H/Zro 2 /Wo 3 /Ito Device, Appl. Surf. Sci., 357 (2015) 799–805. Doi: 10.1016/J.Apsusc.2015.09.056.
[15] S. Leinberg Et Al., Switchable Optical Transmittance of Tio2 Submicron-Diameter Wire Suspension-Based Smart Window Device, Opt. Mater. (Amst)., 46 (2015) 418–422. Doi: 10.1016/J.Optmat.2015.04.057.
[16] T. N. Lin, Y. H. Lin, C. T. Lee, S. Han, and K. W. Weng, Electrochromic Properties of Bipolar Pulsed Magnetron Sputter Deposited Tungsten-Molybdenum Oxide Films, Thin Solid Films, 584 (2015) 341–347. Doi: 10.1016/J.Tsf.2014.12.036.
[17] S. Ulrich, C. Szyszko, S. Jung, and M. Vergöhl, Electrochromic Properties of Mixed Oxides Based on Titanium and Niobium For Smart Window Applications, Surf. Coatings Technol., 314 (2017) 41–44. Doi: 10.1016/J.Surfcoat.2016.11.078.
[18] S. Stojkovikj, M. Najdoski, V. Koleva, and S. Demiri, Preparation of Electrochromic Thin Films By Transformation of Manganese(Ii) Carbonate, J. Phys. Chem. Solids, 74(10) (2013) 1433–1438. Doi: 10.1016/J.Jpcs.2013.05.001.
[19] Z. Chen, A. Xiao, Y. Chen, C. Zuo, S. Zhou, and L. Li, Highly Porous Nickel Oxide Thin Films Prepared By A Hydrothermal Synthesis Method For Electrochromic Application, J. Phys. Chem. Solids, 74(11) (2013) 1522–1526. Doi: 10.1016/J.Jpcs.2013.05.015.
[20] J. Gupta, H. Shaik, and K. N. Kumar, A Review on the Prominence of Porosity in Tungsten Oxide Thin Films For Electrochromism, Ionics (Kiel)., 27(6) (2021) 2307–2334. Doi: 10.1007/S11581-021-04035-8.
[21] V. R. Buch, A. K. Chawla, and S. K. Rawal, Review on Electrochromic Property for Wo3 Thin Films using Different Deposition Techniques, Mater. Today Proc., 3(6) (2016) 1429–1437. Doi: 10.1016/J.Matpr.2016.04.025.
[22] C. Dulgerbaki, A. I. Komur, N. Nohut Maslakci, F. Kuralay, and A. Uygun Oksuz, Synergistic Tungsten Oxide/Organic Framework Hybrid Nanofibers For Electrochromic Device Application, Opt. Mater. (Amst)., 70 (2017) 171–179. Doi: 10.1016/J.Optmat.2017.05.024.
[23] G. Leftheriotis, E. Koubli, and P. Yianoulis, Combined Electrochromic-Transparent Conducting Coatings Consisting of Noble Metal, Dielectric and Wo3 Multilayers, Sol. Energy Mater. Sol. Cells, 116 (2013) 110–119. Doi: 10.1016/J.Solmat.2013.04.013.
[24] H. Li Et Al., Constructing Three-Dimensional Quasi-Vertical Nanosheet Architectures from Self-Assemble Two-Dimensional Wo 3 ·2h 2 O For Efficient Electrochromic Devices, Appl. Surf. Sci., 380 (2016) 281–287. Doi: 10.1016/J.Apsusc.2016.01.009.
[25] H. Najafi-Ashtiani and A. Bahari, Optical, Structural and Electrochromic Behavior Studies on Nanocomposite Thin Film of Aniline, O-Toluidine and Wo3, Opt. Mater. (Amst)., 58 (2016) 210–218. Doi: 10.1016/J.Optmat.2016.05.035.
[26] Y. Yue Et Al., High-Performance Complementary Electrochromic Device Based on Wo3·0.33h2o/Pedot and Prussian Blue Electrodes, J. Phys. Chem. Solids, 110 (2017) 284–289. Doi: 10.1016/J.Jpcs.2017.06.022.
[27] R. Mukherjee and P. P. Sahay, Improved Electrochromic Performance in Sprayed Wo3 Thin Films Upon Sb Doping, J. Alloys Compd., 660 (2016) 336–341. Doi: 10.1016/J.Jallcom.2015.11.138.
[28] K. N. Kumar Et Al., Sputter Deposited Tungsten Oxide Thin Films and Nanopillars?: Electrochromic Perspective, Mater. Chem. Phys., 278(2021) (2022) 125706. Doi: 10.1016/J.Matchemphys.2022.125706.
[29] K. Naveen Kumar Et Al., on Ion Transport During the Electrochemical Reaction on Plane and Glad Deposited Wo3 Thin Films, Mater. Today Proc., (2021) Doi: 10.1016/J.Matpr.2021.11.113.
[30] K. Naveen Kumar, H. Shaik, Sathish, V. Madhavi, and S. Abdul Sattar, on the Bonding and Electrochemical Performance of Sputter Deposited Wo3 Thin Films, Iop Conf. Ser. Mater. Sci. Eng., 872(1) (2020). Doi: 10.1088/1757-899x/872/1/012147.
[31] E. Koubli, S. Tsakanikas, G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Optical Properties and Stability of Near-Optimum Wo3/Ag/Wo3 Multilayersfor Electrochromic Applications, Solid State Ionics, 272 (2015) 30–38. Doi: 10.1016/J.Ssi.2014.12.015.
[32] E. Ahmadi, C. Y. Ng, K. A. Razak, and Z. Lockman, Preparation of Anodic Nanoporous Wo3film using Oxalic Acid As an Electrolyte, Elsevier Bv, 704 (2017).
[33] G. F. Cai, J. P. Tu, D. Zhou, X. L. Wang, and C. D. Gu, Growth of Vertically Aligned Hierarchical Wo3 Nano-Architecture Arrays on Transparent Conducting Substrates with Outstanding Electrochromic Performance, Sol. Energy Mater. Sol. Cells, 124 (2014) 103–110. Doi: 10.1016/J.Solmat.2014.01.042.
[34] R. Siva Prakash, C. Mahendran, J. Chandrasekaran, R. Marnadu, and S. Maruthamuthu, Impact of Substrate Temperature on the Properties of Rare-Earth Cerium Oxide Thin Films and Electrical Performance of P-Si/N-Ceo2 Junction Diode, J. Inorg. Organomet. Polym. Mater., 30(12 )(2020) 5193–5208.Doi: 10.1007/S10904-020-01667-7.
[35] Z. Ji Et Al., Designed Synthesis of Ceo 2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials, Acs Nano, 6(6) (2012) 5366–5380. Doi: 10.1021/Nn3012114.
[36] Y. J. Cho, H. Jang, K. S. Lee, and D. R. Kim, Direct Growth of Cerium Oxide Nanorods on Diverse Substrates for Superhydrophobicity and Corrosion Resistance, Appl. Surf. Sci., 340 (2015) 96–101. Doi: 10.1016/J.Apsusc.2015.02.138
[37] D. Channei, K. Chansaenpak, S. Phanichphant, P. Jannoey, W. Khanitchaidecha, and A. Nakaruk, Synthesis and Characterization of Wo3/Ceo2heterostructured Nanoparticles for Photodegradation of Indigo Carmine Dye, Acs Omega, 6(30) (2021) 19771–19777. Doi: 10.1021/Acsomega.1c02453.
[38] M. B. Babu and K. V. Madhuri, Synthesis and Electrochromic Properties of Nanocrystalline Wo3 Thin Films, Phys. B Condens. Matter, 584(2019) (2020) 412068. Doi: 10.1016/J.Physb.2020.412068