Quantum Clustering Algorithm using the Wheel of Tomography

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2022 by IJETT Journal
Volume-70 Issue-5
Year of Publication : 2022
Authors : Shradha Deshmukh, Preeti Mulay
DOI :  10.14445/22315381/IJETT-V70I5P214

Citation 

MLA Style: Shradha Deshmukh, and Preeti Mulay. "Quantum Clustering Algorithm using the Wheel of Tomography." International Journal of Engineering Trends and Technology, vol. 70, no. 5, May. 2022, pp. 111-119. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I5P214

APA Style:Shradha Deshmukh, and Preeti Mulay. (2022). Quantum Clustering Algorithm using the Wheel of Tomography. International Journal of Engineering Trends and Technology, 70(5), 111-119. https://doi.org/10.14445/22315381/IJETT-V70I5P214

Abstract
A quantum k-means clustering algorithm is introduced by integrating the quantum paradigm to enhance the efficiency of the classical k-means algorithm. Firstly, each vector and k cluster centers are prepared to be in a quantum superposition, then utilized to compute the similarities in parallel. Secondly, the quantum amplitude estimation is applied to convert the similarities into the quantum bit. Finally, the most similar center of the vector is obtained from the qubits by using the quantum algorithm with the help of tomography to determine the minimum distances. Using the IBMQ simulator, completed the performance analysis for air pollution, which involved a two-dimensional dataset. The paper discussed a qk-means quantum clustering algorithm, which first maps the classical data into quantum states and performs distance calculation and updation using the quantum circuits. The paper proposed a general, parallelized, and competitive version of qk-means clustering, observing the outcomes of this performance analysis for multiple combinations of quantitative data series. Results show that the IBMQ simulator can overcome the classical k-means clustering problem of completion time and accuracy.

Keywords
Quantum Clustering, Quantum Machine Learning, Incremental Learning, Quantum Incremental learning, qk-means Algorithm.

Reference
[1] Singh R, Anita G, Capoor S, Rana G, Sharma R, & Agarwal S, Internet of Things Enabled Robot-Based Smart Room Automation and Localization System, The Internet of Things and Big Data Analytics for Smart Generation Springer. (2019) 105-133. https://doi.org/10.1007/978-3-030-04203-5_6
[2] Hassanien A. E, Darwish A, & Abdelghafar S, Machine Learning in Telemetry Data Mining of Space Mission: Basics, Challenging and Future Directions, Artificial Intelligence Review. 53(5) (2020) 3201-3230. https://doi.org/10.1007/s10462-019-09760-1
[3] Varoquaux G, Buitinck L, Louppe G, Grisel O, Pedregosa F, & Mueller A, Scikit-Learn: Machine Learning without Learning the Machinery, GetMobile: Mobile Computing and Communications. 19(1) (2015) 29-33. https://doi.org/10.1145/2786984.2786995
[4] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, & Lloyd S, Quantum Machine Learning, Nature. 549(7671) (2017) 195-202. https://doi.org/10.1038/nature23474
[5] Schuld M, & Killoran N, Quantum Machine Learning in Feature Hilbert Spaces, Physical Review Letters. 122(4) (2019) 040504. https://doi.org/10.1103/PhysRevLett.122.040504
[6] Banchi L, Pereira J, & Pirandola S, Generalization in Quantum Machine Learning: A Quantum Information Standpoint, PRX Quantum. 2(4) (2021) 040321. https://doi.org/10.1103/PRXQuantum.2.040321
[7] Nawaz S. J, Sharma S. K, Wyne S, Patwary M. N, & Asaduzzaman M, Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future, IEEE Access. 7 (2019) 46317-46350. https://doi.org/10.1109/ACCESS.2019.2909490
[8] Nti I. K, Quarcoo J. A, Aning J, & Fosu G. K, A Mini-Review of Machine Learning in Big Data Analytics: Applications, Challenges, and Prospects, Big Data Mining and Analytics. 5(2) (2022) 81-97. https://doi.org/10.26599/BDMA.2021.9020028
[9] Al-Khasawneh M. A, Bukhari A, & Khasawneh A. M, Effective of Smart Mathematical Model by Machine Learning Classifier on Big Data in
Healthcare Fast Response, Computational and Mathematical Methods in Medicine. (2022). https://doi.org/10.1155/2022/6927170
[10] Cil E, Cadir C, Kati O. A, Yilmaz H. B, & Dumanli S, Machine Learning-Based Matching Medium Design for Implant Communications, IEEE Transactions on Antennas and Propagation. (2022). https://doi.org/10.1109/TAP.2022.3140497
[11] Barua H. B, Mondal K. C, & Khatua S, Green Computing for Big Data and Machine Learning, In 5th Joint International Conference on Data Science & Management of Data (9th ACM IKDD CODS and 27th COMAD). (2022) 348-351. https://doi.org/10.1145/3493700.3493772
[12] Liu W. J, Gao P. P, Yu W. B, Qu Z. G, & Yang C. N, Quantum Relief Algorithm, Quantum Information Processing. 17(10) (2018) 1-15. https://doi.org/10.1007/s11128-018-2048-x
[13] Park D. K, Blank C, & Petruccione F, The Quantum Kernel-Based Binary Classifier Theory, Physics Letters A. 384(21) (2020) 126422. https://doi.org/10.1016/j.physleta.2020.126422
[14] Adarsh Kumar, Surbhi Bhatia, Keshav Kaushik, S. Manjula Gandhi, S. Gayathri Devi, Diego A. De J. Pacheco, Arwa Mashat, Survey of Promising Technologies for Quantum Drones and Networks, Access IEEE. (9) (2021) 125868-125911, https://doi.org/10.1109/TNNLS.2021.3084467
[15] Di Matteo O, Gheorghiu V, & Mosca M, Fault-Tolerant Resource Estimation of Quantum Random-Access Memories, IEEE Transactions on Quantum Engineering. 1 (2020) 1-13. https://doi.org/10.1109/TQE.2020.2965803
[16] Weinstein Y. S, Havel T. F, Emerson J, Boulant N, Saraceno M, Lloyd S, & Cory D. G, Quantum Process Tomography of the Quantum Fourier Transform, the Journal of Chemical Physics. 121(13) (2004) 6117-6133. https://doi.org/10.1063/1.1785151
[17] Aaronson M, & Mould J, A Distance Scale from the Infrared Magnitude/HI Velocity-Width Relation, IV-the Morphological Type Dependence and Scatter in the Relation, the Distances to Nearby Groups, the Astrophysical Journal. 265 (1983) 1-17.
[18] Lloyd S, Mohseni M, & Rebentrost P, Quantum Algorithms for Supervised and Unsupervised Machine Learning, arXiv Preprint arXiv:1307.0411. (2013). https://doi.org/10.48550/arXiv.1307.0411
[19] Vedral V, & Plenio M. B, Basics of Quantum Computation, Progress in Quantum Electronics. 22(1) (1998) 1-39. https://doi.org/10.1016/S0079- 6727(98)00004-4
[20] Angara P. P, Stege U, & MacLean A, Quantum Computing for High-School Students an Experience Report, In IEEE International Conference on Quantum Computing and Engineering, (QCE). (2020) 323-329. https://doi.org/10.1109/QCE49297.2020.00047
[21] Christensen A. S, Bratholm L. A, Faber F. A,, & Anatole von Lilienfeld O, FCHL Revisited: Faster and More Accurate Quantum Machine Learning, The Journal of Chemical Physics. 152(4) (2020) 044107. https://doi.org/10.1063/1.5126701
[22] Zhang Y, & Ni Q, Recent Advances in Quantum Machine Learning. Quantum Engineering, 2(1) (2020) e34. https://doi.org/10.1002/que2.34
[23] DeBenedictis E. P, A Future with Quantum Machine Learning. Computer. 51(2) (2018) 68-71. https://doi.org/10.1109/MC.2018.1451646
[24] Emani P. S, Warrell J, Anticevic A, Bekiranov S, Gandal M, McConnell M. J, & Harrow A. W, Quantum Computing at the Frontiers of Biological Sciences, Nature Methods. 18(7) (2021) 701-709. https://doi.org/10.1038/s41592-020-01004-3
[25] Woolf N. J, & Hameroff S. R, A Quantum Approach to Visual Consciousness, Trends in Cognitive Sciences. 5(11) (2001) 472-478. https://doi.org/10.1016/S1364-6613(00)01774-5
[26] Marinatto L, & Weber T, A Quantum Approach to Static Games of Complete Information, Physics Letters A. 272(5-6) (2000) 291-303. https://doi.org/10.1016/S0375-9601(00)00441-2
[27] Gan G, Application of Data Clustering and Machine Learning in Variable Annuity Valuation, Insurance: Mathematics and Economics. 53(3) (2013) 795- 801. https://doi.org/10.1016/j.insmatheco.2013.09.021
[28] Ahuja R, Chug A, Gupta S, Ahuja P, & Kohli S, Classification and Clustering Algorithms of Machine Learning with their Applications, In NatureInspired Computation in Data Mining and Machine Learning, Springer, Cham. (2020) 225-248. https://doi.org/10.1007/978-3-030-28553-1_11
[29] Casaña-Eslava R. V, Jarman I. H, Lisboa P. J, & Martín-Guerrero J. D, Quantum Clustering in Non-Spherical Data Distributions: Finding a Suitable Number of Clusters, Neurocomputing. 268 (2017) 127-141. https://doi.org/10.1016/j.neucom.2017.01.102
[30] Liu D, Jiang M, Yang X, & Li H, Analyzing Documents with Quantum Clustering: A Novel Pattern Recognition Algorithm Based on Quantum Mechanics, Pattern Recognition Letters. 77 (2016) 8-13. https://doi.org/10.1016/j.patrec.2016.03.008
[31] Deshmukh S, & Mulay P, Quantum Clustering Drives Innovations: A Bibliometric and Patentometric Analysis, Libraru Philosophy Practices. (2021). https://digitalcommons.unl.edu/libphilprac/5072/
[32] Horn D, & Gottlieb A, Algorithm for Data Clustering in Pattern Recognition Problems Based on Quantum Mechanics, Physical Review Letters. 88(1) Shradha Deshmukh & Preeti Mulay / IJETT, 70(5), 111-119, 2022 119 (2001) 018702. https://doi.org/10.1103/PhysRevLett.88.018702
[33] Martín-Guerrero J. D, & Lamata L, Quantum Machine Learning: A Tutorial, Neurocomputing. 470 (2022) 457-461. https://doi.org/10.1016/j.neucom.2021.02.102
[34] Das K, & Sadhu A, Experimental Study on the Quantum Search Algorithm Over Structured Datasets Using IBMQ Experience, Journal of King Saud University-Computer and Information Sciences. (2022). https://doi.org/10.1016/j.jksuci.2022.01.012
[35] Blatt R, & Roos C. F, Quantum Simulations with Trapped Ions. Nature Physics. 8(4) (2012) 277-284. https://doi.org/10.1038/nphys2252.