Integration of Real-Time Particle Monitoring in Oil Filtration Equipment for Industrial Applications

Integration of Real-Time Particle Monitoring in Oil Filtration Equipment for Industrial Applications

  IJETT-book-cover           
  
© 2025 by IJETT Journal
Volume-73 Issue-7
Year of Publication : 2025
Author : William Demarini-Acuña, Luis Neira-Cornejo, Karen Cuba-Vargas, Vidis Cutipa-Arapa, Rivaldo Carlos Duran-Aquino, Palomino-Monteza, Vanessa Yaniz
DOI : 10.14445/22315381/IJETT-V73I7P113

How to Cite?
William Demarini-Acuña, Luis Neira-Cornejo, Karen Cuba-Vargas, Vidis Cutipa-Arapa, Rivaldo Carlos Duran-Aquino, Palomino-Monteza, Vanessa Yaniz, "Integration of Real-Time Particle Monitoring in Oil Filtration Equipment for Industrial Applications," International Journal of Engineering Trends and Technology, vol. 73, no. 7, pp.150-163, 2025. Crossref, https://doi.org/10.14445/22315381/IJETT-V73I7P113

Abstract
This paper presents the design of a real-time monitoring system for oil filtration in industrial applications. It was identified that oil contamination negatively impacts the efficiency of hydraulic equipment and generates high maintenance costs. To address this problem, the DMAIC methodology was applied, and a particle counter was integrated with a Programmable Logic Controller (PLC), allowing for automated supervision of the filtration process. The results demonstrated a significant reduction in oil contamination, aligning with ISO 4406 and improving operational efficiency. In addition, the technical and economic analysis showed a favorable return on investment in less than one year. The implementation of this system contributes to the optimization of maintenance processes and sustainability in the industry.

Keywords
Oil filtration, Oil contamination, Industrial control, PLC, ISO 4406 standard.

References
[1] Maria Nadia Pantano et al., “Fourier-Based Dynamic Optimization: Application to the Biodiesel Production Process,” Polytechnic University of Valencia, vol. 18, no. 1, pp. 1-7, 2023.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Nelson Arturo Clavijo Mena, and Carlos Victor Soto Vásquez, “Optimization of Dielectric Oil Treatment in Electrical Transformers by Filtration,” Salesian Polytechnic University, 2022.
[Google Scholar] [Publisher Link]
[3] Virgilio Alonso Ordóñez Ramírez et al., “Optimization of the Physical-Chemical Treatment System for a Carbonated Water Wastewater Treatment Plant,” Industrial Data, vol. 22, no. 2, pp. 199-212, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Avoid Excessive Filtration: The Importance of Optimization, Noria Latín América, 2023. [Online]. Available: https://noria.mx/lube-learn/lubricacion-maquinaria-lube-learn/certificacion-mltii/evite-la-filtracion-excesiva-la-importancia-de-la-optimizacion/
[5] The Destructive Effect of Water on the Function of a Lubricated System, Predictiva 21, 2021. [Online]. Available: https://predictiva21.com/efecto-destructivo-agua-sistema-lubricado
[6] Jimmy Augusto Garcia Panduro, “Proposal to Improve the Lubricant and Pumping Equipment Dispatch System at the Rompad Workshop at the Constancia Mining Unit,” Thesis, Continental University, Huancayo, Peru, 2021.
[Google Scholar] [Publisher Link]
[7] Digital Transformation in Industrial Engineering: Impact of Digitalization on Industrial Processes and Management, Industrial Engineer.org, 2024. [Online]. Available: https://ingenieroindustrial.org/2024/11/11/transformacion-digital-en-la-ingenieria-industrial/
[8] Ministry of Agriculture of Spain, Observatory of the Digitalization of the Agri-Food Sector, 2022. [Online]. Available: https://www.mapa.gob.es/es/desarrollo-rural/temas/innovacion-medio-rural/digitalizacion/sub-observatorio
[9] Critical Agents for a Sustainable Transformation of the World, Higher Center for National Defense Studies, 2022. [Online]. Available: https://www.ieee.es/Galerias/fichero/cuadernos/CE_206_LasCiudades_AgentesCriticosParaUnaTransformacionSostenibleDelMundo.pdf
[10] M. Beatriz Flores Romero, and Federico González Santoyo, The Company of the Future and its Contribution to Development, 2024. [Online]. Available: http://www.inidem.edu.mx/assets/libro-congreso-2024.pdf
[11] The State of Food and Agriculture 2000, Food and Agriculture Organization of the United Nations, 2000. [Online]. Available: https://openknowledge.fao.org/items/b9268495-721c-4ca6-9a3e-6bfce8cf91ac
[12] Understanding the ISO 4406, FMS Filtration, 2025. [Online]. Available: https://fms-filtration.com/es/comprendiendo-el-iso-4406/
[13] NTZ Latin America, The ISO Cleaning Code and Increased Productivity, Cranes and Transport, 2025. [Online]. Available: https://gruasytransportes.wordpress.com/2017/09/07/el-codigo-de-limpieza-iso-y-el-incremento-de-la-productividad-by-ntz-america-latina/
[14] Understanding ISO Cleanliness Codes, Donaldson Filtration Solutions, 2017. [Online]. Available: https://www.donaldson.com/en-in/engine/filters/technical-articles/understanding-iso-cleanliness-codes/
[15] What is a DAP - Process Activity Diagram?, Run Your Business, 2020. [Online]. Available: https://blog.conducetuempresa.com/2016/05/dap-estructura.html
[16] Patch Test Fluid Cleaning Guide, Chevron Lubricants, 2020. [Online]. Available: https://latinamerica.chevronlubricants.com/content/dam/external/isoclean/es_latam/sales-material/sales-sheet/Patch-Test-Fluid Cleanliness-Guide-Spanish.pdf
[17] ISO 4406 Standard: Cost-Effectiveness and Efficiency in System Cleaning, CTF Peru, 2022. [Online]. Available: https://ctfperu.com.pe/entrada/norma-iso-4406-rentabilidad-y-eficacia-en-limpieza-de-sistemas
[18] Manuel Bilbao, and Adolfo Málaga, “Particle Counting,” Lubrication Management, pp. 1-11, 2012.
[Google Scholar]