International Journal of Engineering
Trends and Technology

Research Article | Open Access | Download PDF
Volume 74 | Issue 1 | Year 2026 | Article Id. IJETT-V74I1P123 | DOI : https://doi.org/10.14445/22315381/IJETT-V74I1P123

Distance Antimagic Labeling of Special Classes of Graphs


Anjali Yadav, Minirani S

Received Revised Accepted Published
21 Jan 2025 02 Jan 2026 06 Jan 2026 14 Jan 2026

Citation :

Anjali Yadav, Minirani S, "Distance Antimagic Labeling of Special Classes of Graphs," International Journal of Engineering Trends and Technology (IJETT), vol. 74, no. 1, pp. 298-306, 2026. Crossref, https://doi.org/10.14445/22315381/IJETT-V74I1P123

Abstract

Labeled graphs serve as a versatile mathematical model with diverse applications in engineering fields. A bijective function ๐œ—:๐‘‰(๐บ) โ†’ {1,2,โ€ฆ,๐‘›} is a distance antimagic labeling of a graph G with n vertices such that the vertex weights determined by ๐œ”(๐‘Ž) = โˆ‘ ๐‘๐œ–๐‘(๐‘Ž) ๐œ—(๐‘) Are unique i.e. ๐œ”(๐‘Ž) โ‰  ๐œ”(๐‘) for distinct vertices ๐‘Ž,๐‘ ๐œ– ๐‘‰(๐บ) where N(a) is the open neighbourhood of vertex a in G. This paper demonstrates that distance antimagic labeling and inclusive distance antimagic labeling exist for certain special graph constructions- specifically Mycielskian graphs, splitting graphs, and shadow graphs when applied to fundamental graph classes like cycles, paths, crown graph and star graphs. Furthermore, the uniqueness of the calculated vertex weights is confirmed through a Python-Based Computational Algorithm.

Keywords

Inclusive Distance Antimagic Labeling, Distance antimagic labeling, Splitting graph, Shadow graph, Mycielski Graph.

References

[1] Anton Kotzig, and Alexander Rosa, โ€œMagic Valuations of Finite Graphs,โ€ Canadian Mathematical Bulletin, vol. 13, no. 4, pp. 451-461, 1970.
[
CrossRef] [Google Scholar] [Publisher Link]

[2] Baskar Mari, and Ravi Sankar Jeyaraj, โ€œRadio Labeling of Supersub-Division of Path Graphs,โ€ IEEE Access, vol. 11, pp. 123096-123103, 2023.
[
CrossRef] [Google Scholar] [Publisher Link

[3] Dharmendra Kumar Gurjar, and Auparajita Krishnaa, โ€œVarious Antimagic Labeled Graphs from Graph Theory for Cryptography Applications,โ€ International Journal of Scientific Research in Mathematical and Statistical Sciences, vol. 9, no. 3, pp. 11-18, 2022.
[
CrossRef] [Google Scholar] [Publisher Link

[4] V. Vilfred, โ€œฮฃ-Labelled Graph and Circulant Graphs,โ€ Ph.D. Thesis, University of Kerala, India (1994).
[
Google Scholar]

[5] N. Kamatchi, and S. Arumugam, โ€œDistance Antimagic Graphs,โ€ Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 84, pp. 61-67, 2012.
[
Google Scholar] [Publisher Link

[6] Dafik et al., โ€œInclusive Distance Antimagic Graphs,โ€ AIP Conference Proceedings, vol. 2014, no. 1, pp. 1-9, 2018.
[
CrossRef] [Google Scholar] [Publisher Link

[7] Jan Mycielski, โ€œOn Coloring Graphs,โ€ Colloquium Mathematicae, vol. 3, no. 2, pp. 161-162. 1955.
[
Google Scholar

[8] E. Sampathkumar, and H.B. Walikar, โ€œOn the Splitting Graph of a Graph,โ€ Karnatak University, vol. 25, no. 13, pp. 13-16, 1980.
[
Google Scholar]

[9] Ravindra Kuber Pawar, and Tarkeshwar Singh, โ€œDistance Magic Labelling of Mycielskian Graphs,โ€ Electronic Journal of Graph Theory and Applications, vol. 12, no. 1, pp. 77-88, 2024.
[
CrossRef] [Google Scholar] [Publisher Link

[10] Maurice Genevieva Almeida, and Kingel Savia De Sa, โ€œLocal Distance Antimagic Labeling of Generalized Mycielskian Graphs,โ€ Ars Combinatoria, vol. 164, pp. 33-55, 2025.
[
CrossRef] [Google Scholar] [Publisher Link

[11] Anak Agung Gede Ngurah, Nur Inayah, and Mohamad Irvan Septiar Musti, โ€œOn D-Distance (Anti) Magic Labelings of Shadow Graph of Some Graphs,โ€ Electronic Journal of Graph Theory and Applications, vol. 12, no. 1, pp. 25-34, 2024.
[
CrossRef] [Google Scholar] [Publisher Link

[12] S. Vaidya, and N. Vyas, โ€œAntimagic Labeling of Some Path and Cycle Related Graphs,โ€ Annals of Pure and Applied Mathematics, vol. 3, no. 2, pp. 119-128, 2013.
[
Google Scholar] [Publisher Link]