Lignocellulose chemical composition and handsheet surface morphology analysis on oil palm residue biodelignification treatment using Bacillus cereus from Coptotermus curvignathus

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2020 by IJETT Journal
Volume-68 Issue-12
Year of Publication : 2020
Authors : Sharfina Mutia Syarifah, Ashuvila Mohd Aripin, Ayeronfe Fadilat, Angzzas Sari Mohd Kassim
DOI :  10.14445/22315381/IJETT-V68I12P217


MLA Style: Sharfina Mutia Syarifah, Ashuvila Mohd Aripin, Ayeronfe Fadilat, Angzzas Sari Mohd Kassim. Lignocellulose chemical composition and handsheet surface morphology analysis on oil palm residue biodelignification treatment using Bacillus cereus from Coptotermus curvignathus International Journal of Engineering Trends and Technology 68.12(2020):99-107. 

APA Style:Sharfina Mutia Syarifah, Ashuvila Mohd Aripin, Ayeronfe Fadilat, Angzzas Sari Mohd Kassim. Lignocellulose chemical composition and handsheet surface morphology analysis on oil palm residue biodelignification treatment using Bacillus cereus from Coptotermus curvignathus.  International Journal of Engineering Trends and Technology, 68(12), 99-107.

Handsheet production in the industrial sector consumed high energy and environmentally unfriendly due to mechanical and chemical methods for the delignification process. In this research, Bacillus cereus isolated from termite (Coptotermes curvignathus) gut’s bacteria was used for biodelignification on palm oil biomasses: oil palm leaves (OPL), oil palm trunk (OPT), and empty fruit bunch (EFB). The biodelignification efficiency was analyzed through lignocellulose chemical composition and surface morphology. Lignocelluloses analysis was tested using technical association pulp and paper industry TAPPI T 222 om-02 (lignin content), Kurscher-Hoffner (holocellulose and hemicellulose content), and Chlorite (cellulose content). The highest lignin reduction by Bacillus cereus was 21.7% for treated EFB, followed by OPT (7.0%) and OPL (9.2%). EFB also showed the highest reduction of gap area (76.9%) for scanning electron microscope (SEM) and image analysis with the lowest gap average area (0.03 mm2) compared with untreated OPL, which were 26.3% and 1.63 mm2, respectively. Therefore, the EFB handsheet produced showed to be the best potential for industrial commercial.

[1] Ezeudu, O. B., Agunwamba, J. C., Ezeasor, I. C., & Madu, C. N.. Sustainable production and consumption of paper and paper products in Nigeria: A review. Resources, 8(1), (2019) 53-65.
[2] Jiménez, L., Rodríguez, A., Pérez, A., Moral, A., & Serrano, L. Alternative raw materials and pulping process using clean technologies. Industrial Crops and Products, 28(1), (2008) 11–16.
[3] Food and Agriculture Organization [FAO]. (2016). Pulp and paper capacities. Food and Agriculture Organization of the United Nations. Retrieved on October 3, 2018, from
[4] Kassim, A. S. M., Aripin, A. M., Ishak, N., Zainulabidin, M. H., & Abang Zaidel, D. N. F. Oil palm leaf fiber and its suitability for paper-based products. Journal of Engineering and Applied Sciences, 11(11), (2016a) 7364–7369.
[5] Nasser, R. A., Hiziroglu, S., Abdel-Aal, M. A., Al-Mefarrej, H. A., Shetta, N. D., & Aref, I. M. Measurement of some pulp and paper properties made from date palm midribs and wheat straw by the soda-AQ pulping process. Measurement, 62, (2015) 179–186.
[6] Rodríguez, A., Moral, A., Serrano, L., Labidi, J., & Jiménez, L. Rice straw pulp was obtained by using various methods. Bioresource Technology, 99(8), (2008) 2881-2886.
[7] Liu, Z., Wang, H., & Hui, L. Pulping and papermaking of nonwood fibers. Pulp and Paper Processing, 1. (2018).
[8] Mohieldin, S.D. Pretreatment approaches in non-wood plants for pulp and paper production: a review. Journal of Forest Products & Industries, 3(2). (2014) 84-88. ISSN:2325–4513
[9] Moradbak, A., Tahir, P. M., Mohamed, A. Z., & Halis, R. B. Alkaline sulfite anthraquinone and methanol pulping of bamboo (Gigantochloa scortechinii). BioResources, 11(1), (2016) 235-248.
[10] Jahan, M. S., Gunter, B. G., & Rahman, A. F. M. A. Substituting wood with non-wood fibers in papermaking: a win-win solution for Bangladesh. SSRN Electronic Journal. (2009).
[11] Daud, W. R. W., & Law, K. N. Oil palm fibers as papermaking material: potentials and challenges. Bioresources, 6(1), (2011) 901– 917.
[12] Rushdan, I., Nurul Husna, M. H., Latifah, J., Ainun Zuriyati, M., Sharmiza, A., Salmiah, U., & Mahmudin, S. A preliminary study on the effects of bio pulping on oil palm pulp property (Elaeis Guineensis) Empty fruit bunches. Seventh National Conference on Oil Palm Tree Utilisation OPTUC Strategizing for Commercial Exploitation, Sunway Resort Hotel, Petaling Jaya, Selangor, Malaysia, 13, (2008) 1–8.
[13] Singh, P., Sulaiman, O., Hashim, R., Peng, L.C., & Singh, R. P. Evaluating bio pulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolour. International Biodeterioration and Biodegradation, 82, (2013) 96–103.
[14] Kurnia, J. C., Jangam, S. V., Akhtar, S., Sasmito, A. P., & Mujumdar, A. S. Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Research Journal, 3(1), (2016) 332-346.
[15] Malaysia Palm Oil Board (MPOB). (2018). Overview of the Malaysian oil palm industry 2018. Retrieved on November 25, 2019, 2018.pdf
[16] Onoja, E., Chandren, S., Abdul Razak, F. I., Mahat, N. A., & Wahab, R. A. Oil Palm (Elaeis guineensis) biomass in Malaysia: the present and prospects. Waste and Biomass Valorization. (2018) 1- 19.
[17] Azeez, M. A. Pulping of non-woody biomass. Pulp and Paper Processing, (2018) 55-86.
[18] Ferreira, R. G., Azzoni, A. R., & Freitas, S. (2020). On the production cost of lignocellulose? degrading enzymes. Biofuels, Bioproducts, and Biorefining. doi:10.1002/bbb.2142
[19] Rizal, N., Ibrahim, M., Zakaria, M., Abd-Aziz, S., Yee, P., & Hassan, M. Pretreatment of oil palm biomass for fermentable sugars production. Molecules, 23(6), (2018) 1381.
[20] Ruiz-Dueñas, F. J., & Martinez, A. T. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2, (2009) 104–177.
[21] Sainsbury, P. D., Hardiman, E. M., Ahmad, M., Otani, H., Seghezzi, N., Eltis, L. D., & Bugg, T. D. H. Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of rhodococcus jostii RHA1. ACS Chemical Biology, 8(10), (2013) 2151–2156.
[22] Al-Mefarrej, H. Chemical evaluation of some lignocellulosic residues for pulp and paper production. America-Eurasian Journal of Agricultural and Environmental Science, 13(4), (2013) 498–504.
[23] Chen, Y. H., Chai, L. Y., Zhu, Y. H., Yang, Z. H., Zheng, Y., & Zhang, H. Biodegradation of Kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. Journal of Applied Microbiology, 112(5), (2012) 900–906.
[24] Jiménez, L., Rodríguez, A., Pérez, A., Moral, A., & Serrano, L. (2008). Alternative raw materials and pulping process using clean technologies. Industrial Crops and Products, 28(1), 11–16.
[25] Espinosa, E., Sánchez, R., Otero, R., Domínguez-Robles, J., & Rodríguez, A. (2017). A comparative study of the suitability of different cereal straws for lignocellulose nanofibres isolation. International Journal of Biological Macromolecules, 103, 990–999.
[26] Risdianto, H., Sofianti, E., Suhardi, S. H., & Setiadi, T. Optimization of Laccase Production using White Rot Fungi and Agricultural Wastes in Solid-State Fermentation. Journal of Engineering and Technological Sciences, 44(2), (2012) 93-105.
[27] Khalil, H. P. S.A., Jawaid, M., Hassan, A., Paridah, M. T., & Zaido, A. Oil palm biomass fibers and recent advancement in oil palm biomass fibers based hybrid biocomposites. Composites and Their Applications, (2012) 188-220.
[28] Risdianto, H., Kardiansyah, T., & Sugiharto, A. Empty fruit bunches for pulp and paper production: The current state in Indonesia. The potential and availability of EFB, 48(6), (2016) 25– 31.
[29] Ferrer, A., Vega, A., Ligero, P., & Rodríguez, A. Pulping of empty fruit bunches (efb) from the palm oil industry by formic acid. Bioresources, 6(4), (2011) 4282-4301.
[30] Rahman, N.H.A., Rahman, N.A.A., Aziz, S.A., & Hassan, M.A. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. Bioresources, 8(4), (2013) 6136-6150.
[31] Main, N.M., Talib, R.A., Ibrahim, R., Rahman, R.A., and Mohamed, A.Z. Suitability of coir as pulp and paper. Agriculture and Agricultural Science Procedia, 2, (2014) 304-311.
[32] Syarifah, S. M., Kassim, A. S. M., Aripin, A. M., Ishak, N., Fadilat, A., & Adnan, S. Bio-Mechanical Pulping of Bacteria Pre-Treatment on Oil Palm Biomass for Handsheet Production. International Journal of Engineering & Technology, 8(1.1), (2019) 177-183.
[33] Patil, S. R. Production and purification of lignin peroxidase from Bacillus megaterium and its application in bioremediation. CIBTech Journal of Microbiology ISSN, 3(1), (2014) 2319–3867.
[34] The Technical Association of Pulp and Paper Industry [TAPPI]. Determination of equilibrium moisture in the pulp, paper, and paperboard for chemical analysis (revision T550 om-08). South Norcross, GA, USA: TAPPI. Retrieved from (2013).
[35] Daud, Z., Kassim, A. S. M., Aripin, A. M., Awang, H., & Hatta, M. Z. M. Chemical Composition and Morphological of Cocoa Pod Husks and Cassava Peels for Pulp and Paper Production. Australian Journal of Basic and Applied Sciences, 7(9), (2013) 406–411.
[36] The Technical Association of Pulp and Paper Industry [TAPPI]. Acid-insoluble lignin in wood and pulp (T 222 om-02). South Norcross, GA, USA: TAPPI. Retrieved from (2002c).
[37] Han, J. S., & Rowell, J. S. Chapter 5: chemical composition of fibers. Rowel, R.M., Young. R.A. and Rowell, J.K. (eds.), Paper and composites from agro-based resources (pp. 83-134). CRC Press, Boca: Raton. (1997).
[38] Sable, I., Grinfelds, U., Jansons, A, Vikele, L., Irbe, I., Verovkins, A, … In. Comparing the properties of wood and pulp fibers from lodgepole pine (Pinus contorta) and Scots pine (Pinus sylvestris). Bioresources, 7(2008), (2012) 1771–1783.
[39] Cordeiro, N., Belgacem, M.N., Torres, I.C. & Moura, J.C.V.P. Chemical composition and pulping of banana pseudo-stems. Industrial Crops and Products, 19(2), (2004) 147 - 154.
[40] Chan, D. Biomedical engineering and environmental engineering. Proceedings of the 2014 2nd International Conference on Biomedical Engineering and Environmental Engineering (ICBEEE 2014), Wuhan, China: CRC Press. (2015).
[41] Waliszewska, B., MLeczek, M., Zborowska, M., Golin´ski, P., Rutkowski, P., & Szentner, K. (2019). Changes in the chemical composition and cellulose and lignin structure in elmwood exposed to various forms of arsenic. Cellulose, (26), (2019) 6303–6315.
[42] Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. Fiber dimensions, lignin, and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products, 19(3), (2004) 245–254.
[43] Madadi, M., & Abbas, A. Lignin degradation by fungal pretreatment: a review. Journal of Plant Pathology & Microbiology, 8(2), (2017) 1-6.
[44] Marques, G., Rencoret, J., Gutiérrez, A., Alfonso, J. E., & del Río, J. C. Evaluation of the chemical composition of different nonwoody plant fibers used for pulp and paper manufacturing. The Open Agriculture Journal, 4(1), (2010) 93-101.
[45] Qing, Q., & Wyman, C. E. Supplementation with xylanase and ?- xylosidase reduces Xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4(1), (2011) 18.
[46] Jacob, R.S., Pan, W.L., Fuller, W.S., & Mckean, W.T. Genetic and environmental influences on Washington state wheat straw (1999) 839–847. Pulping Conference Proceeding Atlanta: TAPPI Press.
[47] Lima, D. U., Oliveira, R. C., & Buckeridge, M. S. Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydrate Polymers, 52(4), (2003) 367-373.
[48] King, J. H. P., Mahadi, N. M., Bong, C. F. J., Ong, K. H., & Hassan, O. The bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary patterns. Insect Science, 21(5), (2013) 584–596. doi:10.1111/1744-7917.12061
[49] Nadir, N., Ismail, N. L., & Hussain, A. S. Fungal pretreatment of lignocellulosic materials. in biomass for bioenergy-recent trends and future challenges. IntechOpen. (2019).
[50] Köpcke, V, Conversion of Wood and Non-wood Paper-Grade Pulps to Dissolving-Grade Pulps. Royal Institute of Technology, (2010).
[51] Faris, S. I., Ainun, Z. M. A., & Jawaid, M. Effect of microcrystalline cellulose on the strength of oil palm empty fruit bunch paper. IOP Conference Series: Materials Science and Engineering, 368, (2018) 012042.
[52] Bossu, J., Eckhart, R., Czibula, C., Winter, A., Zankel, A., Gindl- Altmutter, W., & Bauer, W. Fine cellulosic materials produced from chemical pulp: the combined effect of morphology and rate of addition on paper properties. Nanomaterials, 9(3), (2019) 321.
[53] Adam Suleiman Khamiss, Babiker Abdalla Karama, Gurashi Abdullah Gasmelseed "Influence of F-PbO2 Doping on the Microstructure, Surface Morphology and Electrochemical Properties of the Electrode for Chlorates Production Cell", International Journal of Engineering Trends and Technology (IJETT), V50(4), (2017) 203-210

oil palm handsheet, biodelignification, lignocellulose, (SEM), empty fruit bunch (EFB).